Tabla de contenido
PalancaIntroducción
Elegir el tamaño de conducto correcto para sus proyectos eléctricos es crucial para garantizar la seguridad, la eficiencia y el cumplimiento de los códigos de construcción. El tamaño del conducto afecta la facilidad para pasar los cables a través de él, la protección contra el sobrecalentamiento y la capacidad de expansión futura. Los conductos de tamaño insuficiente pueden provocar una acumulación excesiva de calor, lo que dificulta el tendido de cables y daña potencialmente el aislamiento. Los conductos de gran tamaño, si bien no son peligrosos, pueden resultar innecesariamente costosos y engorrosos.
Esta guía tiene como objetivo desmitificar el proceso de selección del tamaño de conducto adecuado para diversas instalaciones eléctricas. Cubriremos los conceptos básicos de qué son los conductos, los factores que influyen en su tamaño, los estándares y códigos relevantes e instrucciones paso a paso para calcular el tamaño correcto.
Revisión de diferentes tipos de conductos
Elegir el conducto adecuado implica comprender varios tipos y sus aplicaciones específicas. Cada tipo de conducto tiene características únicas que se adaptan a diferentes entornos y requisitos de instalación. A continuación se muestra una descripción detallada de los conductos metálicos y no metálicos, incluidos sus beneficios y usos apropiados.
Conductos Metálicos:
1. Conducto de metal rígido (RMC) y conducto de metal intermedio (IMC): conocidos por su durabilidad, estos conductos están hechos de acero revestido o aluminio, lo que brinda una excelente protección contra daños físicos. RMC se usa comúnmente en entornos industriales y exteriores, mientras que IMC es más liviano y adecuado para aplicaciones interiores y exteriores donde la estética importa.
2. Tubería metálica eléctrica (EMT): Fabricada con acero galvanizado o aluminio, la EMT es liviana y flexible, lo que la hace ideal para espacios reducidos en edificios comerciales.
3. Conducto de metal flexible (FMC) y conducto de metal flexible hermético a líquidos (LFMC): el FMC está enrollado en espiral para brindar flexibilidad y se utiliza en entornos dinámicos donde se produce movimiento de equipos. LFMC agrega un revestimiento plástico para mayor estanqueidad, lo que lo hace adecuado para áreas húmedas como accesorios de iluminación para exteriores.
Conductos no metálicos:
1. Conducto de PVC rígido: Fabricados con cloruro de polivinilo, los conductos de PVC no son conductores y son resistentes a la humedad y a los productos químicos, lo que los hace ideales para entornos subterráneos y corrosivos en entornos residenciales y comerciales.
2.Tubos eléctricos no metálicos (ENT) y conductos no metálicos flexibles herméticos (LFNC): ENT es flexible y liviano, adecuado para uso en interiores en edificios residenciales. LFNC, fabricado con materiales plásticos, ofrece flexibilidad y protección estanca para lugares mojados o húmedos, asegurando la no conductividad en ambientes expuestos al agua.
Factores que influyen en la selección del tamaño del conducto
Capacidad de llenado de cables
La capacidad de llenado de cables se refiere a la cantidad de espacio dentro de un conducto que pueden ocupar los cables eléctricos. El Código Eléctrico Nacional (NEC) proporciona pautas sobre el porcentaje máximo de llenado para garantizar un funcionamiento seguro y eficiente. Llenar demasiado un conducto puede provocar una acumulación excesiva de calor, lo que dificulta la extracción de cables y daña potencialmente el aislamiento.
– Cable único: Para un solo cable, la capacidad de llenado puede ser de hasta 53% del diámetro interno del conducto.
– Dos cables: cuando se utilizan dos cables, la capacidad de llenado no debe exceder los 31%.
– Tres o más cables: para tres o más cables, la capacidad de llenado no debe exceder los 40%.
Estos límites están diseñados para evitar el sobrecalentamiento y garantizar que haya suficiente espacio para instalar los cables sin dañar su aislamiento.
Material del conducto y su impacto en el tamaño
El material del conducto afecta su diámetro interno y su flexibilidad, lo que a su vez afecta el tamaño. Los diferentes materiales tienen propiedades únicas que los hacen adecuados para diversas aplicaciones.
Los conductos metálicos generalmente tienen un espesor de pared más delgado en comparación con los conductos no metálicos, lo que ofrece un diámetro interno mayor para el mismo tamaño nominal. Esto puede resultar ventajoso cuando se intenta maximizar la cantidad de cables dentro de un conducto. El conducto metálico rígido (RMC) y el conducto metálico intermedio (IMC) ofrecen una protección sólida y son adecuados para entornos de alto riesgo, mientras que los tubos metálicos eléctricos (EMT) son más livianos y fáciles de doblar, lo que los hace ideales para aplicaciones comerciales donde se necesita flexibilidad.
Los conductos no metálicos suelen tener paredes más gruesas, lo que reduce su diámetro interno. Sin embargo, proporcionan una excelente resistencia a la corrosión y no son conductores. Los conductos de PVC se utilizan comúnmente en lugares subterráneos y húmedos debido a su resistencia a la humedad. Los tubos eléctricos no metálicos (ENT) y los conductos no metálicos flexibles herméticos (LFNC) son opciones flexibles para diseños de cableado complejos y entornos expuestos al agua.
Al seleccionar el material del conducto, es fundamental considerar los requisitos específicos de su instalación, incluida la durabilidad, la facilidad de instalación y las condiciones ambientales.
Consideraciones ambientales (uso en interiores versus uso en exteriores)
El entorno de instalación afecta significativamente la selección y el tamaño de los conductos, ya que los diferentes entornos plantean desafíos únicos que deben abordarse para garantizar la longevidad y seguridad del sistema eléctrico.
Para uso en interiores, los conductos generalmente están protegidos de condiciones climáticas extremas, pero es posible que aún deban resistir impactos físicos y exposición química. Los EMT y los conductos flexibles como FMC se usan comúnmente en interiores debido a su facilidad de instalación y adaptabilidad a diseños complejos.
Para uso en exteriores, los conductos deben poder resistir la humedad, las fluctuaciones de temperatura, la exposición a los rayos UV y posibles daños físicos. RMC e IMC son adecuados para instalaciones en exteriores debido a su construcción robusta y resistencia a la corrosión. Los conductos de PVC también se utilizan ampliamente en exteriores debido a su excelente resistencia a la humedad y sus propiedades no conductoras.
En ambientes húmedos o corrosivos, las áreas expuestas a la humedad, productos químicos u otras sustancias corrosivas requieren conductos que puedan resistir la degradación. LFMC y LFNC están diseñados para dichos entornos y brindan flexibilidad y un sello hermético para proteger el cableado.
Estándares y códigos de dimensionamiento de conductos
El NEC proporciona pautas integrales para el tamaño de los conductos para garantizar la instalación segura y eficiente de los sistemas eléctricos. Estos requisitos cubren factores como la capacidad de llenado, el espacio para doblar cables y la protección contra daños mecánicos. El cumplimiento de los estándares NEC ayuda a prevenir problemas como sobrecarga de conductos, calentamiento excesivo y dificultades de mantenimiento y reparaciones. El NEC especifica porcentajes máximos de llenado para diferentes tipos y tamaños de conductos según el tamaño y la cantidad de conductores que contienen. Además, describe los radios de curvatura mínimos para evitar daños a los cables y al aislamiento durante la instalación. El cumplimiento de los requisitos de NEC 10 es esencial para garantizar la seguridad eléctrica y el cumplimiento de los códigos.
Además del NEC, los códigos y regulaciones de construcción locales también rigen el tamaño de los conductos y las prácticas de instalación. Estos códigos pueden incluir requisitos específicos adaptados a las condiciones ambientales locales, tipos de edificios y estándares de seguridad. Es importante que los instaladores y diseñadores se familiaricen con estos códigos y regulaciones locales para garantizar el cumplimiento de los requisitos regionales. Los códigos locales pueden imponer restricciones o especificaciones adicionales no cubiertas por el NEC, por lo que es fundamental consultar a las autoridades pertinentes o a los funcionarios encargados del código para obtener orientación. Al cumplir con los códigos de construcción locales y NEC, los instaladores pueden garantizar la instalación segura y legal de conductos eléctricos dentro de su jurisdicción.
Dominar los cálculos de tamaño de conductos
Determine el área total de conductores:
– Cuente el número de conductores.
– Calcule la sección transversal total de todos los conductores utilizando los datos del fabricante o, si es posible, mediante medición directa.
Consultar Código o Reglamento:
– Consulte el Código Eléctrico Nacional (NEC) o las regulaciones locales para determinar el porcentaje de llenado máximo permitido para el tipo y tamaño de conducto que está utilizando.
Calcule el tamaño del conducto requerido:
– Divida el área total de los conductores por el porcentaje de área de relleno permitido para encontrar el tamaño mínimo de conducto necesario.
Consultar tamaños estándar:
– Redondear al tamaño de conducto estándar más cercano disponible en el mercado.
Considere los requisitos de instalación:
– Asegúrese de que el tamaño del conducto seleccionado cumpla con todos los demás requisitos de instalación, como el radio de curvatura y la tensión de tracción.
Guión:
– Debe pasar 7 conductores de cobre THHN (cada uno de 10 AWG) a través de un conducto de PVC.
– La capacidad máxima de llenado para el tamaño de conducto de PVC elegido es 40%.
Paso 1: Determine el área total de los conductores:
– Para conductores de cobre de 10 AWG, el diámetro es de aproximadamente 0,1019 pulgadas.
– Calcule el área de la sección transversal total de los 7 conductores:
– Área total = (π × (0,1019)^2) × 7 ≈ 0,0325 pulgadas cuadradas.
Paso 2: Consultar Código o Reglamento:
– Suponga que la capacidad de llenado máxima permitida para el conducto de PVC es 40%.
Paso 3: Calcule el tamaño del conducto requerido:
– Divida el área total de conductores por la capacidad de llenado permitida:
– Tamaño de conducto requerido = Área total / Capacidad de llenado permitida
– Tamaño del conducto requerido = 0,0325 / 0,40 ≈ 0,08125 pulgadas cuadradas.
Paso 4: Verifique los tamaños estándar:
– El tamaño de conducto estándar más cercano a más de 0,08125 pulgadas cuadradas es un conducto de PVC de 1 pulgada. Otros tamaños estándar como referencia:
– El conducto de 2 pulgadas ofrece una mayor capacidad que el de 1 pulgada y admite más conductores o tamaños de conductores más grandes.
– El conducto de 3 pulgadas proporciona un mayor potencial de expansión para instalaciones más grandes o actualizaciones futuras.
– El conducto de 4 pulgadas permite una capacidad adicional significativa, adecuada para configuraciones de cableado extensas.
– Hay disponibles conductos de 5 y 6 pulgadas para aplicaciones que requieren mucho espacio o numerosos conductores.
– Los tamaños más grandes, como los conductos de 7 y 8 pulgadas, se utilizan en contextos industriales especializados donde se necesita una capacidad extrema.
Paso 5: Considere los requisitos de instalación:
– Asegúrese de que el conducto de PVC de 1 pulgada elegido cumpla con todos los requisitos de instalación, como radio de curvatura, tensión de tracción, etc.
Si sigue estos pasos y considera una variedad de tamaños de conductos estándar, puede determinar el tamaño de conducto adecuado para sus necesidades de instalación específicas y, al mismo tiempo, estar preparado para posibles ajustes o ampliaciones futuras.
Herramientas y recursos para un dimensionamiento preciso
-Cinta métrica: una herramienta estándar para medir longitudes y diámetros de conductos con precisión.
-Calibradores: Útiles para medir con precisión el diámetro de conductores o el diámetro interior de conductos.
-Calibrador de cables: herramienta para medir el espesor de los cables, lo que ayuda a determinar los tamaños de los conductores.
-Tabla de llenado de conductos: tablas o tablas proporcionadas por los fabricantes o disponibles en libros de códigos eléctricos para determinar la cantidad máxima de conductores permitidos en diferentes tamaños de conductos.
-Calculadora: una calculadora sencilla para realizar cálculos aritméticos básicos relacionados con el dimensionamiento de conductos.
-Manual NEC: El manual del Código Eléctrico Nacional proporciona pautas, gráficos y tablas para el tamaño de los conductos y las capacidades de llenado.
-Sitios web de fabricantes: muchos fabricantes de conductos ofrecen recursos en línea, incluidas guías de tamaño y calculadoras basadas en sus productos.
–Calculadoras de llenado de conductos: varios sitios web ofrecen calculadoras de llenado de conductos donde puede ingresar la cantidad y el tamaño de los conductores y obtener recomendaciones para el tamaño de los conductos. Algunos ejemplos incluyen:
Al utilizar estas herramientas y recursos, puede garantizar un tamaño preciso de los conductos para sus instalaciones eléctricas.
Errores comunes a evitar
Llenar demasiado el conducto
Llenar demasiado un conducto colocando demasiados alambres o cables más allá de su capacidad puede causar varios problemas, incluido el sobrecalentamiento, el aumento de la resistencia eléctrica y posibles daños en el aislamiento, todo lo cual complica el mantenimiento futuro. Esto también puede dificultar la extracción de cables adicionales cuando sea necesario. Para evitar estos problemas, es esencial cumplir con los límites de capacidad de llenado establecidos por códigos como el Código Eléctrico Nacional (NEC), utilizando tablas de tamaño adecuadas para garantizar que la cantidad y el tamaño de los cables permanezcan dentro de los porcentajes de llenado permitidos.
Ignorar las necesidades de expansión futuras
No considerar las necesidades de expansión futuras durante la instalación de conductos puede generar modificaciones costosas y que requieren mucho tiempo en el futuro, así como limitaciones de espacio cuando se deben agregar nuevos conductos. Esta falta de previsión puede dar lugar a instalaciones ineficientes y desordenadas. La solución es planificar una expansión futura instalando conductos un poco más grandes que los requisitos actuales y dejando espacio para cables adicionales. Además, la incorporación de puntos de extracción accesibles puede facilitar modificaciones más sencillas en el futuro.
Malentendidos sobre los requisitos del código
Comprender mal o malinterpretar los códigos eléctricos que rigen la instalación de conductos puede tener consecuencias graves, incluidos riesgos de seguridad, inspecciones fallidas, multas, responsabilidades legales y sistemas eléctricos ineficientes. Para evitar estos problemas, es fundamental que los instaladores y diseñadores estén completamente familiarizados con los códigos aplicables, como el NEC, y actualicen periódicamente sus conocimientos para mantenerse al día con cualquier cambio. En caso de duda, consultar con inspectores o expertos en códigos puede garantizar el cumplimiento y las prácticas de instalación adecuadas.
Conclusión
En resumen, seleccionar el tamaño de conducto correcto es esencial para garantizar la seguridad, la eficiencia y el cumplimiento de los códigos de construcción en proyectos eléctricos. Los conductos de tamaño insuficiente corren el riesgo de sobrecalentarse y dañar el aislamiento, mientras que los de gran tamaño son innecesariamente costosos y engorrosos. Esta guía desmitifica el proceso al cubrir los tipos de conductos, los factores que influyen en el tamaño, los estándares y códigos relevantes y los cálculos paso a paso. Comprender los tipos de conductos, considerar los factores ambientales y consultar herramientas y recursos como el Manual NEC y calculadoras en línea son pasos cruciales. Los errores comunes que se deben evitar incluyen llenar excesivamente los conductos, descuidar las necesidades de expansión futuras y malinterpretar los requisitos del código. Si sigue estas pautas, podrá garantizar un dimensionamiento preciso de los conductos y unas instalaciones eléctricas eficientes.