Tubes métalliques électriques

Conduits en PVC conformes à la norme IEC 61386 : tout ce que vous devez savoir

Conduits en PVC conformes à la norme IEC 61386 : tout ce que vous devez savoir

Conduits en PVC conformes à la norme IEC 61386 : tout ce que vous devez savoir

1. Introduction

Pour les installations électriques, le choix du bon conduit est crucial pour garantir sécurité, durabilité et performance. Parmi les différents matériaux de conduits disponibles, le PVC (polychlorure de vinyle) est un choix populaire en raison de sa flexibilité, de sa résistance à la corrosion et de sa facilité d'installation. La norme CEI 61386 fournit des lignes directrices essentielles pour la classification et les exigences de performance des systèmes de conduits, garantissant ainsi leur conformité aux normes mondiales de sécurité et de fiabilité.

Que vous travailliez sur un projet résidentiel, commercial ou industriel, comprendre les spécifications et les avantages des conduits selon la norme CEI 61386 est essentiel pour prendre des décisions éclairées. Cet article examine en détail les systèmes de conduits définis par la norme CEI 61386 et compare les conduits en PVC aux conduits métalliques traditionnels. À la fin de ce guide, nous espérons que vous maîtriserez parfaitement les classifications des conduits, les tests de performance et les bonnes pratiques pour choisir le système adapté à vos projets électriques.

Commençons par le titre du premier chapitre, suivi d'une articulation détaillée sur la CEI et la norme CEI 61386.

2. Comprendre la norme CEI et la norme CEI 61386

2.1 Qu’est-ce que la CEI ?

La Commission électrotechnique internationale (CEI) est une organisation mondiale de normalisation qui élabore et publie des normes internationales pour toutes les technologies électriques, électroniques et connexes. Fondée en 1906, la CEI joue un rôle crucial pour garantir la sécurité, la qualité et l'interopérabilité des produits et systèmes électriques dans le monde entier. Ses normes sont largement adoptées et reconnues par les gouvernements, les fabricants et les organismes de réglementation, favorisant ainsi la cohérence internationale dans la conception, la production et les performances des produits électriques.

Parmi ses nombreuses normes, la CEI joue un rôle majeur dans l'élaboration de critères pour des systèmes tels que les conduits, les accessoires de câblage et les câbles électriques. L'organisation travaille en étroite collaboration avec les organismes nationaux de normalisation, garantissant ainsi la mise en œuvre des normes CEI à l'échelle mondiale, aidant ainsi les industries à maintenir un niveau élevé de sécurité opérationnelle et de compatibilité technique.

2.2 Qu’est-ce que la norme IEC 61386 ?

Parmi ses normes clés, la norme IEC 61386 est largement considérée comme la référence incontournable pour les systèmes de conduits, qui se concentre spécifiquement sur la classification et les exigences de performance des systèmes de conduits utilisés pour protéger et acheminer le câblage électrique.

2.2.1 Pays et marchés qui adoptent la norme IEC 61386

Chine

La Chine a transposé la norme CEI 61386 en norme nationale GB/T 20041.1-2015, qui régit les systèmes de conduits sur le marché intérieur. Cette adaptation garantit que les fabricants et professionnels locaux respectent les normes de sécurité et de performance internationalement reconnues pour les systèmes de conduits, tout en s'alignant sur les exigences du marché mondial.

Union européenne (UE)

Dans l'Union européenne, des pays comme l'Allemagne, la France et d'autres pays adoptent largement la norme CEI 61386 grâce au marquage CE. Cela garantit que les systèmes de conduits répondent aux normes européennes essentielles de sécurité et de performance, facilitant ainsi la libre circulation des marchandises entre les États membres. La reconnaissance de la norme CEI 61386 dans l'UE permet aux fabricants et aux fournisseurs de garantir que leurs conduits répondent aux exigences rigoureuses du marché.

Autres pays membres de la CEI

L'Australie, le Japon et plusieurs autres pays membres de la CEI utilisent souvent la norme CEI 61386 comme base pour leurs réglementations techniques nationales ou leurs spécifications industrielles. Ces pays peuvent adapter la norme CEI pour mieux s'adapter aux conditions locales, mais les principes fondamentaux de la norme CEI 61386 restent la base de leurs exigences techniques. L'adoption généralisée de la norme CEI 61386 contribue à la normalisation des systèmes de conduits, garantissant ainsi la sécurité, la qualité et la compatibilité au-delà des frontières internationales.

2.2.2 Quels types de conduits la norme IEC 61386 mentionne-t-elle ?

Conduits métalliques – Connus pour leur grande résistance mécanique et leurs capacités de mise à la terre.

Conduits non métalliques – Fabriqué à partir de matériaux comme le PVC, qui offrent une résistance à la corrosion et une isolation électrique.

Conduits composites – Combinaison des propriétés des matériaux métalliques et non métalliques pour des applications spécialisées.

La norme décrit les exigences de performance dans des conditions normales et extrêmes, notamment l'exposition à la pression mécanique, aux contraintes thermiques et à l'exposition aux produits chimiques. Elle définit également les méthodes d'essai utilisées pour évaluer la conformité à ces critères de performance.

De plus, la norme CEI 61386 reconnaît que certains systèmes de conduits peuvent être utilisés dans des environnements dangereux. Dans ce cas, des exigences supplémentaires doivent être respectées pour garantir la sécurité et la conformité.

2.2.3 Classification des conduits selon la norme CEI 61386

La norme IEC 61386 est divisée en plusieurs parties, chacune traitant de types spécifiques de systèmes de conduits et de leurs exigences uniques :

CEI 61386-21 – Systèmes de conduits rigides : définit les exigences relatives aux conduits qui conservent une forme fixe sous contrainte mécanique.

CEI 61386-22 – Systèmes de conduits pliables : Couvre les conduits qui peuvent être pliés ou fléchis sans revenir à leur forme d’origine.

CEI 61386-23 – Systèmes de conduits flexibles : Spécifie les propriétés des conduits qui peuvent fléchir et se plier à plusieurs reprises sans dommage.

CEI 61386-24 – Systèmes de conduits enterrés : décrit les exigences particulières pour les conduits exposés à la pression du sol, à l’humidité et aux changements de température.

CEI 61386-25 – Dispositifs de fixation de conduits : définit les exigences de performance des composants utilisés pour fixer les systèmes de conduits en place.

Ce système de classification permet aux fabricants, aux installateurs et aux inspecteurs de sélectionner le système de conduits approprié pour des applications spécifiques, garantissant ainsi la cohérence et la conformité aux normes internationales de sécurité et de performance.

Nous présentons ici quelques détails sur la norme IEC et IEC 61386.

Dans la section suivante, nous examinerons de plus près la norme IEC 61386-1, qui est une partie essentielle de la série IEC 61386 et définit les exigences générales relatives aux systèmes de conduits.

3. Présenter les exigences clés de la norme IEC 61386

La norme CEI 61386-1 fournit des lignes directrices détaillées et des critères de performance pour les conduits et leurs raccords utilisés pour protéger et gérer les conducteurs et câbles isolés dans les installations électriques ou les systèmes de communication. Ces systèmes sont conçus pour être utilisés dans des environnements avec des tensions électriques allant jusqu'à 1 000 V CA et 1 500 V CC, ce qui les rend adaptés aux applications résidentielles et industrielles.

3.1 Exigences générales et conditions d'essai

Nous fournissons ici un résumé des exigences générales relatives aux systèmes de conduits et des conditions dans lesquelles ils sont testés.

3.1.1 Exigences générales

Conception et constructionLes conduits et leurs raccords doivent être conçus et fabriqués pour garantir des performances fiables en utilisation normale. Ils doivent assurer une protection adéquate de l'utilisateur et des zones environnantes.

Assemblage et protection:Lorsqu'ils sont assemblés conformément aux instructions du fabricant, les conduits et les raccords doivent assurer une protection mécanique et, si nécessaire, une protection électrique des câbles et des conducteurs à l'intérieur.

Intégrité des articulations:Les propriétés de protection du joint entre le conduit et le raccord de conduit doivent être égales ou supérieures aux niveaux de protection déclarés pour l'ensemble du système de conduits.

Durabilité:Les conduits et les raccords doivent résister aux contraintes rencontrées pendant le transport, le stockage, l'installation et l'application régulière sans compromettre leurs performances.

Conformité:La conformité à ces exigences est vérifiée en effectuant les tests spécifiés décrits dans la norme.

3.1.2 Conditions générales des tests

Tests de typeTous les essais réalisés conformément à la norme sont des essais de type. Les systèmes de conduits de même classification (bien que les couleurs puissent varier) doivent être considérés comme un même type de produit aux fins des essais.

Température ambiante:Sauf indication contraire, les tests doivent être effectués à une température ambiante de 20 ± 5°C.

Conditions d'échantillonnageLes essais sont généralement réalisés sur trois échantillons neufs prélevés sur une même longueur de conduit. Les conduits et raccords non métalliques ou composites doivent être conditionnés pendant au moins 240 heures à 23 ± 2 °C et à une humidité relative de 40 à 60 °C avant les essais.

État des échantillonsLes échantillons doivent être propres et toutes les pièces montées comme elles le seraient en utilisation normale. Les systèmes de conduits doivent être assemblés conformément aux instructions du fabricant, en particulier lorsqu'une force est nécessaire pour assembler les joints.

Échecs des tests et actionsSi un échantillon ne satisfait pas aux exigences du test, les tests restants seront effectués sur des échantillons supplémentaires si nécessaire. Un échec à un test nécessite un nouveau test complet de tous les échantillons pour garantir la conformité.

3.2 Critères de classification selon la norme CEI 61386

La norme CEI 61386 classe les systèmes de conduits en fonction de leurs propriétés mécaniques, électriques, thermiques, d'influences externes et de résistance à la flamme. Elle n'implique pas de tests réels, mais établit la classification des conduits selon des propriétés spécifiques. En résumé, la classification aide les utilisateurs à choisir le type de conduit adapté à leur application. Voici quelques informations pour vous aider à mieux comprendre.

3.2.1 Propriétés mécaniques

Les systèmes de conduits sont classés en fonction de leur capacité à résister à différentes contraintes mécaniques.

Résistance à la compression:S'étend de Très léger, Léger, Moyen, Lourd et Très lourd.

Résistance aux chocs:Classé de très léger à très lourd, indiquant dans quelle mesure le conduit peut supporter les chocs ou impacts physiques.

Résistance à la flexion:Les classifications incluent rigide, pliable, auto-récupérable et flexible, montrant la facilité avec laquelle le conduit peut se plier ou revenir à sa forme d'origine.

Résistance à la traction:S'étend de très léger à très lourd, définissant la capacité du matériau à résister à l'étirement sous tension.

Capacité de charge suspendue:Les classifications de très léger à très lourd indiquent la quantité de poids que le conduit peut supporter lorsqu'il est suspendu.

3.2.2 Plages de température

Les systèmes de conduits sont classés en fonction de leur résistance aux températures extrêmes :

Plage de température inférieure:Classifications de +5°C à -45°C, définissant la température minimale à laquelle le conduit peut être transporté, installé et utilisé.

Tableau 1 Plage de température inférieure

Plage de température supérieure:Les classifications vont de 60°C à 400°C, indiquant la température maximale que le conduit peut supporter pendant l'application et l'installation.

Tableau 2 Plage de température supérieure

3.2.3 Caractéristiques électriques

Les systèmes de conduits doivent répondre à des exigences électriques spécifiques :

Avec des caractéristiques de continuité électrique:Cette classification garantit que le conduit maintient la continuité électrique, assurant la mise à la terre et la protection.

Avec des caractéristiques d'isolation électrique:Indique la capacité du conduit à agir comme un isolant, empêchant le passage du courant électrique.

3.2.4 Résistance aux influences extérieures

La capacité du conduit à résister aux facteurs environnementaux externes est classée comme suit :

Protection contre la pénétration d'objets solides:Le niveau de protection est défini selon les normes IEC 60529, avec au moins une protection IP3X.

Protection contre la pénétration de l'eau:Les classifications sont basées sur la capacité à empêcher l'eau de pénétrer dans le conduit, avec un indice IPX0 minimum.

Résistance à la corrosion:Les conduits peuvent être classés avec ou sans protection contre la corrosion, selon le matériau et l'utilisation prévue.

3.2.5 Propagation de la flamme

Les systèmes de conduits sont classés en fonction de leur résistance à la propagation des flammes :

Non propagateur de la flamme:Conduit qui ne permet pas aux flammes de se propager sur toute sa longueur.

Propagation de la flamme:Conduit qui peut permettre la propagation des flammes, bien qu'il résiste généralement au feu dans une certaine mesure.

De plus, dans des pays comme l’Australie et l’Autriche, les conduits peuvent être classés pour leurs faibles émissions de gaz acides, indiquant leur capacité à résister à certains dangers environnementaux.

3.3 Exigences en matière de marquage et de documentation

Nous résumons ici également les exigences de marquage de la norme IEC 61386. La compréhension des exigences de marquage et de documentation des systèmes de conduits est essentielle tant pour les fournisseurs que pour les clients.

Pour les fournisseurs, il garantit la conformité aux normes internationales, améliore la traçabilité et renforce la réputation de la marque en fournissant une identification claire du produit et des informations fiables.

Pour les clients, cela garantit des produits de haute qualité répondant à des critères de performance spécifiques, facilite le choix des produits et garantit une installation et une assistance faciles. Un marquage approprié facilite les transactions et garantit la sécurité et la fiabilité des produits.

Identification du fabricant:Chaque conduit doit être marqué du nom ou de la marque du fabricant ou du vendeur responsable et d'une marque d'identification du produit (par exemple, un numéro de catalogue ou un symbole) pour une identification facile.

Code de classification: Le conduit ou son plus petit emballage doit être marqué d'un code de classification. Ce code, conformément à l'annexe A, doit comprendre au moins les quatre premiers chiffres et être clairement visible.

Conduits auto-récupérables:Les conduits auto-récupérables doivent également porter le code de classification sur le conduit ou sur le plus petit emballage fourni, avec une étiquette claire indiquant au moins les cinq premiers chiffres.

Compatibilité et classification:Le fabricant est responsable d'indiquer la compatibilité des pièces au sein d'un système de conduits et doit fournir une classification complète dans la documentation du produit, ainsi que les informations nécessaires pour un transport, un stockage, une installation et une utilisation appropriés.

Propagation de la flammeLes conduits en matériaux propagateurs de flammes doivent être marqués d'un symbole spécifique (icône de flamme) sur toute leur longueur, idéalement à des intervalles ne dépassant pas 1 mètre. Si l'emballage rend le marquage invisible, il doit être apposé sur l'emballage.

Installations de mise à la terre:Les conduits avec des dispositifs de mise à la terre doivent être marqués du symbole IEC 60417-5019 pour la terre de protection, mais celui-ci ne doit pas être placé sur des pièces amovibles comme les raccords.

Durabilité et lisibilitéLes marquages doivent être durables, clairs et lisibles, et être vérifiés avec une vision normale ou corrigée. La surface de marquage doit également être soumise à des tests de frottement pour garantir sa durabilité, avec des procédures spécifiques pour tester l'endurance du marquage dans diverses conditions.

Conformité des inspectionsTous les marquages doivent être inspectés afin de garantir leur conformité aux normes en vigueur. Cela comprend des contrôles visuels et des tests de frottement avec du coton imbibé de solvants comme le n-hexane 95%, afin de garantir leur intégrité dans des conditions normales de manipulation et d'usure.

3.4 Dimensions et exigences de construction pour les systèmes de conduits

Il est essentiel de comprendre les dimensions et les exigences de construction des systèmes de conduits pour garantir une installation sûre et des performances fiables.

3.4.1 Conformité des dimensions

Filetage et diamètres extérieurs : Les filetages et les diamètres extérieurs des conduits doivent être conformes à la norme IEC 60423. Cela garantit que toutes les tailles et tous les diamètres de filetage sont uniformes et répondent aux spécifications nécessaires en matière de compatibilité et de sécurité.

Autres dimensions : Pour toutes les autres dimensions, les systèmes de conduits doivent répondre aux exigences décrites dans la partie 2 de la norme CEI 61386, garantissant ainsi la cohérence et des mesures normalisées entre les différents types de systèmes de conduits.

3.4.2 Normes de construction

Bords tranchants et bavures : Les systèmes de conduits doivent être conçus et construits sans bords tranchants, bavures ou projections de surface qui pourraient endommager les câbles ou blesser les installateurs et les utilisateurs pendant la manipulation et l'installation.

Vis:Les vis utilisées pour fixer les composants ou les couvercles doivent être conformes à des directives spécifiques :

  • Filetages métriques ISO:Toutes les vis doivent utiliser des filetages métriques ISO pour éviter d'endommager l'isolation du câble lors de l'installation.
  • Vis autotaraudeuses:Les vis autotaraudeuses ne doivent pas être utilisées pour éviter d'endommager le conduit ou les raccords.

Fixation et couple de serrage des visLes vis de fixation des conduits doivent résister aux contraintes mécaniques lors de l'installation et de l'utilisation normale. Pour une fixation avec des vis à filetage préformé, celles-ci doivent être serrées et desserrées 10 fois (ou 5 fois dans certains cas) sans subir de dommage. Les vis autotaraudeuses doivent être testées pour vérifier les valeurs de couple indiquées dans le tableau 3, afin de garantir une installation et une durabilité correctes sans endommager la vis ni la partie filetée.

Tableau 3

Matériau et résistanceTout matériau à l'intérieur du joint (par exemple, caoutchouc, fibre) exposé aux influences extérieures doit offrir le même niveau de protection que le conduit ou le raccord lui-même. Cela garantit la résistance globale du système aux facteurs environnementaux.

Démontage:Pour les systèmes de conduits assemblés sans filetage, les fabricants doivent préciser si le système peut être démonté et comment cela peut être fait en toute sécurité, garantissant ainsi la facilité d'entretien et la flexibilité.

4. Tests détaillés des conduits dans la norme CEI 61386

4.1 Propriétés mécaniques requises dans la norme CEI 61386

Les systèmes de conduits doivent présenter une résistance mécanique suffisante pour supporter les forces auxquelles ils sont soumis en cours d'utilisation. Selon leur classification, ces systèmes ne doivent pas se fissurer ni se déformer au point de rendre difficile l'insertion des conducteurs ou câbles isolés. Ils doivent également pouvoir supporter des équipements s'ils sont utilisés comme supports, tant pendant l'installation que pendant le fonctionnement. Ils doivent être vérifiés par les essais suivants. Nous détaillerons ces essais ci-après.

Pour une meilleure compréhension, sauf indication contraire, les tests pertinents mentionnés ci-dessous sont généralement requis pour tous les types de conduits électriques, y compris les conduits métalliques, non métalliques et composites.

4.1.1 Test de compression

Des échantillons de conduits (200 ± 5 mm de long) sont soumis à un essai de compression en appliquant une force progressivement croissante jusqu'à atteindre la valeur spécifiée pour chaque classification de conduit. Après application de la force, le diamètre extérieur de l'échantillon est à nouveau mesuré afin de vérifier l'absence de déformation. La différence entre le diamètre initial et le diamètre aplati ne doit pas dépasser 251 TP3T de la dimension d'origine. La force est ensuite retirée et l'échantillon est vérifié pour détecter d'éventuelles fissures. Cet essai garantit la résistance du conduit à la compression pendant l'installation et l'utilisation.

Tableau 4

4.1.2 Essai d'impact

Cet essai évalue la résistance aux chocs des systèmes de conduits en soumettant douze échantillons (200 ± 5 mm de long) à un impact spécifié. Les échantillons sont d'abord conditionnés à la température requise, puis un marteau est lâché sur l'échantillon pour simuler des impacts potentiels en conditions réelles. La masse du marteau et la hauteur de chute varient selon la classification du conduit, les classes plus lourdes nécessitant des essais de choc plus importants. Après l'essai, le conduit ne doit présenter aucun dommage, fissure ou déformation significatifs.

Tableau 5

4.1.3 Essai de flexion 

Le test de flexion est effectué pour garantir que les conduits métalliques et non métalliques peuvent résister à la flexion lors de l'installation sans dommage.

Pour conduits métalliques (tailles 16, 20 et 25)Les échantillons sont pliés à un angle de 90° ± 5° avec un rayon intérieur jusqu'à six fois le diamètre nominal. Après pliage, le conduit ne doit présenter aucune fissure, ouverture ni déformation excessive, et les soudures doivent rester intactes. Pour les conduits à soudures, les deux côtés du coude sont testés afin de garantir la solidité structurelle du conduit.

Pour les conduits non métalliquesLe processus de pliage est similaire, avec une longueur de 500 mm ± 10 mm et une température de 12 ± 2 °C. Ces échantillons ne doivent présenter aucun dommage visible, tel que fissures ou déformations, après l'essai. Le conduit doit pouvoir reprendre sa forme droite sous son propre poids sans nécessiter de vitesse initiale.

Pour conduits composites, ils sont déclarés par le fabricant comme étant pliables et sont testés comme des conduits métalliques et non métalliques.

4.1.4 Test de flexion

L'essai de flexion vise à garantir que les systèmes de conduits, notamment les conduits flexibles, peuvent supporter des mouvements répétés sans dommage. Il est réalisé sur six échantillons, dont trois testés aux températures minimales et trois aux températures maximales déclarées pour le transport, l'application et l'installation.

Pour les conduits flexibles, l'essai garantit que le produit est adapté au transport et à l'installation à température ambiante et maximale, conformément aux spécifications du fabricant. Si le conduit est uniquement adapté à la flexion à température ambiante, l'essai est réalisé à 20 ± 2 °C.

Les échantillons sont fixés à un élément oscillant et soumis à un mouvement de va-et-vient à une fréquence de 5 000 flexions sur un angle de 180°. L'essai est réalisé à une vitesse de 40 ± 5 flexions par minute. À l'issue du cycle de flexion, les échantillons ne doivent présenter aucune fissure ni dommage visible, que ce soit à vue normale ou avec correction, confirmant ainsi la durabilité du conduit sous des mouvements répétés.

Ce test garantit que les conduits flexibles conservent leur intégrité pendant l'installation et la manipulation, ce qui les rend adaptés aux environnements nécessitant des mouvements ou des flexions fréquents.

4.1.5 Test d'effondrement

L'essai d'effondrement évalue la capacité des conduits non métalliques et composites à résister aux pressions externes sans se déformer ni s'effondrer. Les conduits métalliques ne sont pas soumis à cet essai.

Pour les conduits non métalliques, classés comme cintrables par le fabricant, les échantillons sont cintrés puis fixés à un support rigide à l'aide de quatre sangles, conformément aux instructions du fabricant. Les échantillons sont ensuite placés dans une étuve à une température spécifiée pendant 24 ± 15 minutes afin de les conditionner correctement. Après ce temps, le conduit est positionné de manière à ce que les parties droites de l'échantillon forment un angle de 45° par rapport à la verticale, garantissant ainsi leur intégrité face aux forces externes.

Ce test garantit que le conduit résiste à la pression sans s'affaisser ni se déformer, préservant ainsi sa capacité à protéger les câbles qu'il contient. Ce test est essentiel pour les matériaux non métalliques et composites afin de garantir leur durabilité dans des conditions normales d'utilisation.

4.1.6 Essai de traction

L'essai de traction est réalisé pour mesurer la résistance à la traction des systèmes de conduits. Un échantillon composé d'un conduit et de deux raccords (ou raccords de terminaison) est assemblé conformément aux instructions du fabricant, en veillant à ce que la longueur du conduit entre les raccords soit d'au moins 200 mm. Lorsque cette longueur n'est pas réalisable, l'essai est réalisé sur deux échantillons de conduit et de raccords.

L'essai applique une force de traction uniformément croissante jusqu'à atteindre la valeur spécifiée dans le tableau 6. La force est maintenue pendant 2 minutes ± 10 secondes à 23 ± 2 °C. Après l'essai, le conduit et les raccords doivent rester correctement assemblés, sans dommage visible sur les composants lorsqu'ils sont observés sans grossissement.

Tableau 6

Si la résistance à la traction du système n'est pas déclarée, le fabricant doit s'assurer que le système répond aux exigences

les normes pertinentes en matière de résistance à la traction conformément à la partie appropriée de la norme CEI 61386. Le test garantit que le système conservera son intégrité structurelle pendant l'utilisation sans endommager les raccords ou le conduit sous la force de traction.

4.1.7 Essai de charge suspendue

L'essai de charge suspendue évalue la résistance et la durabilité des raccords de conduits conçus pour supporter des charges suspendues. Le raccord est fixé à une structure rigide selon une méthode approuvée par le fabricant, le dispositif de suspension étant orienté vers le bas. Une charge spécifiée, basée sur la classification du tableau 7, est appliquée pendant 48 heures.

Pour réussir l'essai, le raccord ne doit présenter aucune fissure ni déformation visible susceptible de compromettre son utilisation normale. Pour les raccords de conduits non métalliques et composites, l'essai est réalisé dans une étuve à la température maximale de fonctionnement déclarée, avec une tolérance de ± 2 °C.

Tableau 7

4.2 Propriétés électriques

4.2.1 Exigences électriques

Test de continuité (métallique, composite) : les systèmes de conduits déclarant des caractéristiques de continuité électrique doivent être testés immédiatement après l'installation.

Collage de pièces métalliques (métalliques, composites) : Les conduits métalliques ou composites doivent être construits de manière à permettre le collage des pièces métalliques accessibles. La conformité est vérifiée par inspection.

Mise à la terre (métallique, composite) : Les parties conductrices des conduits métalliques ou composites susceptibles de devenir sous tension en cas de défaut doivent être correctement mises à la terre. La conformité est vérifiée par liaison électrique.

Résistance de l'isolation (non métallique, composite) : Les systèmes de conduits non métalliques et composites doivent présenter une résistance d'isolation et une résistance électrique adéquates. La conformité est vérifiée par des tests de rigidité diélectrique et de résistance d'isolation.

4.2.2 Test de liaison (métallique, composite)

Pour évaluer la continuité électrique des systèmes de conduits métalliques et composites, un test de liaison est réalisé en connectant 10 sections de conduit à leurs raccords, conformément aux instructions du fabricant. Un courant de 25 A à 50-60 Hz est appliqué au système pendant 60 secondes, la chute de tension étant mesurée pour calculer la résistance. La résistance ne doit pas dépasser 0,1 Ω pour garantir une liaison électrique correcte. Si différents types de raccords sont utilisés, le test doit être répété pour chaque type. De plus, tout revêtement protecteur susceptible d'interférer avec la conductivité doit être retiré avant le test.

4.2.3 Rigidité diélectrique et résistance d'isolement (non métallique, composite)

Pour les systèmes de conduits non métalliques et composites, la résistance de l'isolant est testée en immergeant des échantillons dans une solution d'eau salée. Après immersion, un essai haute tension est réalisé en augmentant progressivement la tension jusqu'à 2 000 V CA pendant 15 minutes et en la maintenant pendant 5 secondes. Le système est considéré comme conforme s'il résiste à cette tension sans déclencher un circuit de sécurité de 100 mA. La résistance de l'isolant est également mesurée après application de la tension, et le système doit présenter une résistance d'au moins 100 MΩ pour réussir.

Les raccords de conduits sont soumis à des procédures de test similaires. Les échantillons sont immergés dans l'eau pendant 24 heures, puis séchés avant le test. Les raccords sont scellés avec un matériau isolant et une électrode est insérée pour simuler les conditions d'installation réelles. Après un test haute tension, la résistance d'isolement doit être supérieure à 5 MΩ pour être considérée comme conforme.

4.3 Propriétés thermiques

Les conduits non métalliques et composites doivent présenter une résistance thermique suffisante. Leur conformité est déterminée par des procédures d'essai normalisées. Les conduits métalliques ne sont pas explicitement mentionnés dans cette section, car le métal présente généralement des critères de performance thermique différents.

L'essai de chauffage est conforme à la classification de la résistance à la compression déclarée du conduit. Des échantillons de conduit (100 ± 5 mm chacun) sont chauffés pendant 4 heures et 5 minutes à la température spécifiée (voir tableau 8) avec une tolérance de ± 2 °C.

Après chauffage, une charge est appliquée pendant 24 heures et 15 minutes à l'aide d'une tige d'acier de 6,0 ± 0,1 mm, positionnée perpendiculairement à l'axe du conduit. La charge totale appliquée correspond à la classification du tableau 8, garantissant une simulation précise des contraintes mécaniques.

Une fois la charge retirée, le conduit doit permettre le passage d'un calibre approprié sous son propre poids, sans force externe. Cet essai garantit que le conduit conserve ses dimensions internes et son intégrité structurelle après des contraintes thermiques et mécaniques.

4.4 Risque d'incendie

Les conduits non métalliques et composites sont soumis à tous les essais de risque d'incendie, y compris les évaluations de l'application du fil incandescent et de la flamme, afin de garantir leur conformité aux normes de résistance au feu. Les conduits métalliques ne sont pas explicitement mentionnés dans les critères d'essai.

4.4.1 Réaction au feu

Les systèmes de conduits ne sont pas en contact direct avec des pièces sous tension, ce qui signifie qu'ils ne présentent pas de risque immédiat d'incendie. Cependant, leur contribution à la propagation du feu et des flammes doit être évaluée, en particulier pour les raccords de conduits non métalliques et composites.

4.4.2 Contribution au feu

Les systèmes de conduits non propagateurs de flamme doivent présenter une résistance adéquate à la propagation des flammes. La conformité des raccords de conduits non métalliques et composites est évaluée par deux essais principaux. Le premier est l'essai au fil incandescent, réalisé conformément à la norme CEI 60695-2-11, où un fil chauffé à 750 °C est appliqué sur le conduit en position verticale. Le conduit est conforme s'il ne présente pas de flammes visibles ni d'incandescence continue, ou si les flammes s'éteignent dans les 30 secondes suivant le retrait du fil.

Le deuxième essai applique une flamme de 1 kW, conformément à la norme CEI 60695-11-2. L'échantillon de conduit est placé verticalement à l'intérieur d'une enceinte métallique ouverte afin de minimiser les interférences avec l'air extérieur. Cet essai évalue également la résistance à la flamme des conduits non métalliques et composites exposés directement au feu.

4.4.3 Propagation du feu

Pour garantir la résistance au feu, les conduits sont testés par exposition directe à la flamme à un angle de 45° dans une enceinte métallique contrôlée. Les échantillons sont solidement fixés à l'aide de pinces pour éviter toute déformation pendant l'essai. Une tige en acier assure un support supplémentaire pour les conduits plus fins. Le temps d'exposition à la flamme varie en fonction de l'épaisseur du matériau, comme indiqué dans le tableau 9, allant de 20 secondes pour les conduits de 0,5 mm d'épaisseur à 500 secondes pour les conduits jusqu'à 8 mm d'épaisseur.

Tableau 9

Un conduit est conforme s'il ne s'enflamme pas ou s'il s'éteint spontanément dans les 30 secondes suivant le retrait de la flamme. De plus, le test garantit qu'un papier de soie placé sous le conduit ne s'enflamme pas et qu'aucune carbonisation ni brûlure ne s'étend au-delà de 50 mm du point d'exposition à la flamme. Ces critères garantissent que les conduits non métalliques respectent les normes de sécurité incendie, empêchant ainsi la propagation des flammes dans les installations électriques.

4.4.4 Caractéristiques supplémentaires de réaction au feu

Dans certaines régions, les conduits non métalliques doivent également respecter des normes de faibles émissions de gaz acides.

En AustralieLes conduits classés comme à faible émission de gaz acides sont testés conformément à la norme IEC 60754-1, où les émissions ne doivent pas dépasser 5 mg d'acide chlorhydrique par gramme de matériau.

En AutricheDes réglementations similaires s'appliquent selon la norme CEI 60754-2. Ces exigences contribuent à réduire les émissions de gaz toxiques en cas d'incendie, améliorant ainsi la sécurité dans les environnements clos.

4.5 Influences externes

La protection du boîtier s'applique aux matériaux non métalliques et métalliques, mais la résistance à la corrosion et les tests se concentrent sur les systèmes métalliques, bien que les matériaux non métalliques ne soient pas explicitement testés, ils ont parfois une résistance inhérente aux produits chimiques.

4.5.1 Degré de protection offert par l'enceinte

Les systèmes de conduits doivent offrir une résistance adéquate aux influences extérieures, conformément à la classification déclarée par le fabricant, avec une exigence minimale IP30. La conformité est vérifiée par des tests spécifiques évaluant la protection contre les corps solides et la pénétration d'eau.

Protection contre les corps solides étrangersLes assemblages de conduits et de raccords sont testés pour garantir l'absence de poussière visible sous une vision normale. Les tests sont conformes à la norme CEI 60529, et les systèmes obtenant un résultat de 5 ou 6 sont considérés comme conformes.

Résistance solide

Protection contre les infiltrations d'eau: Les assemblages de conduits, y compris les raccords, sont testés pour leur résistance à l'eau selon les méthodes de la norme CEI 60529. Pour les systèmes classés 3 et 4, un essai au tube oscillant est utilisé pour évaluer la pénétration de l'eau. Les systèmes classés 1 et plus sont conformes si l'eau ne forme pas de gouttelettes visibles sous une vision normale.

résistance à l'eau

4.5.2 Résistance à la corrosion

Les systèmes de conduits métalliques et composites, à l'exception des filetages, doivent démontrer une résistance adéquate à la corrosion, tant pour les applications intérieures qu'extérieures. La résistance à la corrosion est classée en quatre niveaux :

Faible protection:Revêtements de base comme la peinture d'apprêt.

Protection moyenne: Émaillage au four ou électrozingage.

Protection moyenne/élevée:Revêtements améliorés comme la shérardisation.

Haute protection:Revêtements très résistants tels que l'acier inoxydable ou le revêtement en zinc par immersion à chaud.

4.5.3 Essais de corrosion pour différents matériaux

Pour les systèmes de conduits en acier peint et zingué et en composite, la conformité est vérifiée par des tests spécifiques.

Faible protection:Inspecté pour une couverture complète.

Protection moyenne:Nettoyé avec un solvant et immergé dans une solution contenant du ferricyanure de potassium et du persulfate d'ammonium pour tester l'intégrité du revêtement.

Haute protection:Soumis à un dégraissage, une immersion dans l'acide sulfurique et une immersion dans le sulfate de cuivre pour vérifier la résistance à la corrosion. L'échantillon doit être soigneusement nettoyé après l'essai pour éliminer les résidus.

Pour conduits métalliques non ferreux et composites Pour les systèmes de chauffage, les fabricants doivent fournir des informations sur la résistance à la corrosion. Certains dépôts superficiels mineurs, comme les précipitations de cuivre sur les filetages, peuvent être négligés.

4.6 Compatibilité électromagnétique

Les produits couverts par cette norme sont généralement passifs en termes d'influences électromagnétiques, notamment en termes d'émission et d'immunité. Cela signifie qu'en utilisation normale, les systèmes de conduits n'émettent pas d'interférences électromagnétiques (IEM) et ne sont pas significativement affectés par les signaux électromagnétiques externes.

Cependant, lorsque ces produits sont intégrés à un système de câblage, l'ensemble de l'installation peut émettre des signaux électromagnétiques ou être influencé par des champs électromagnétiques externes. Le degré d'influence dépend de la nature de l'environnement d'installation et des appareils connectés au système. Par conséquent, les considérations de compatibilité électromagnétique (CEM) sont importantes pour l'installation globale, y compris les systèmes de conduits.

Matériaux métalliques et non métalliques : Les exigences CEM s'appliquent généralement aux systèmes de conduits métalliques et non métalliques. Cependant, les conduits métalliques peuvent offrir un meilleur blindage contre les interférences électromagnétiques que les conduits non métalliques, plus passifs en termes d'émissions et d'immunité électromagnétiques.

5. Conduit métallique vs conduit en PVC non métallique

Ci-dessus, nous avons terminé notre introduction à la norme CEI 61386-1. En comprenant les différents tests et classifications décrits dans la norme, vous pourrez faire un choix éclairé entre différents matériaux, tels que les conduits électriques en PVC non métalliques et les systèmes de conduits métalliques.

Dans ce qui suit, nous allons aborder de manière plus concrète et détaillée les conduits métalliques et les conduits en PVC pour vous aider à mieux comprendre.

conduit métallique

5.1 Conduit métallique

Les tests et exigences décrits dans la norme CEI 61386-1 illustrent clairement les avantages et les inconvénients des systèmes de conduits métalliques, ainsi que les différents types de conduits disponibles. Ces tests mettent en évidence des facteurs clés tels que la résistance mécanique, la résistance au feu et le blindage électromagnétique, qui constituent des atouts majeurs des conduits métalliques.

Cependant, ils révèlent également des défis tels que le poids, la complexité de l’installation et la sensibilité à la corrosion.

Dans ce qui suit, nous faisons un résumé pour que vous puissiez mieux comprendre.

5.1.1 Types de conduits métalliques

Conduit métallique rigide (RMC) – Un conduit en acier à paroi épaisse conçu pour une protection maximale dans les applications industrielles et commerciales. Très résistant, il est également lourd et nécessite un filetage pour les raccordements.

Conduit métallique intermédiaire (IMC) – Une alternative plus légère au RMC, offrant une bonne protection pour un poids réduit. Il est couramment utilisé en extérieur et en milieu industriel.

Tubes métalliques électriques (EMT) – Un conduit en acier léger et à paroi mince, facile à installer et à cintrer, idéal pour les bâtiments commerciaux et les applications intérieures. Cependant, sa protection mécanique est inférieure à celle des conduits RMC ou IMC.

Conduit métallique flexible (FMC) – Conçu pour les applications nécessitant de la flexibilité, le FMC est utilisé dans les zones où le mouvement ou les vibrations sont un problème, comme les connexions de moteurs.

Conduit métallique flexible étanche aux liquides (LFMC) – Similaire au FMC mais recouvert d’un revêtement en plastique imperméable, ce qui le rend adapté aux environnements humides ou extérieurs.

Conduit en aluminium – Une alternative résistante à la corrosion aux conduits en acier, souvent utilisée dans les environnements où l’humidité est un problème, comme les zones côtières.

5.1.2 Revêtements protecteurs pour conduits métalliques

Pour améliorer leur durabilité et leur résistance à la corrosion, les conduits métalliques sont souvent traités avec des revêtements protecteurs. Certains d'entre eux sont des conduits en matériaux composites.

Revêtement galvanisé – Appliqué sur les conduits en acier pour prévenir la rouille et la corrosion, généralement par galvanisation à chaud.

Revêtement époxy – Offre une protection supplémentaire contre les produits chimiques et les environnements difficiles, couramment utilisés dans les environnements industriels.

Revêtement PVC – Ajoute une couche supplémentaire d’isolation et de résistance à la corrosion, le rendant adapté aux installations souterraines et extérieures.

Aluminium anodisé – Améliore la résistance des conduits en aluminium à l’oxydation, ce qui les rend idéaux pour les environnements marins et humides.

5.1.3 Avantages et inconvénients des conduits métalliques

Avantages :

Excellente protection mécanique du câblage électrique.

Haute résistance au feu et aux dommages physiques.

Fournit un blindage électromagnétique pour les systèmes électriques sensibles.

Convient aux environnements difficiles et industriels.

Inconvénients :

Plus lourd et plus difficile à installer par rapport aux conduits non métalliques.

Sensible à la corrosion s'il n'est pas correctement revêtu ou entretenu.

Nécessite une mise à la terre, ce qui ajoute de la complexité à l'installation.

5.1.4 Applications courantes des conduits métalliques

Installations industrielles – Protège le câblage dans les usines et les installations.

Bâtiments commerciaux – Souvent utilisé dans les bureaux et les magasins de détail.

Lieux dangereux – Convient aux environnements explosifs ou à haut risque.

Installations extérieures – Le RMC et l’IMC sont couramment utilisés dans les endroits exposés.

Conduit solaire

5.2 Conduit en PVC

Les conduits en PVC (polychlorure de vinyle) sont une alternative non métallique largement utilisée aux conduits métalliques. Ils offrent des avantages tels que la résistance à la corrosion, la légèreté et la facilité d'installation. Contrairement aux conduits métalliques, le PVC ne conduit pas l'électricité, éliminant ainsi le besoin de mise à la terre. C'est donc un choix privilégié pour les applications résidentielles, commerciales et souterraines. Nous explorons ci-dessous les différents types de conduits en PVC, leurs avantages et leurs limites potentielles.

5.2.1 Types de conduits en PVC/Types spéciaux

Conduit en PVC rigide (RPVC) – Conduit durable à paroi épaisse, conçu pour les applications souterraines et exposées. Résistant aux chocs et à l'humidité, il est couramment utilisé en enfouissement direct et dans les endroits humides.

Tubes électriques non métalliques (ENT) – Un conduit flexible en PVC ondulé, léger et facile à cintrer. Il est principalement utilisé en intérieur, où une installation simple et rapide est requise.

Conduit solaire en PVC – Un conduit résistant aux UV et aux intempéries, spécialement conçu pour les installations de panneaux solaires. Il protège les câbles des expositions prolongées au soleil, des températures extrêmes et des conditions extérieures difficiles, garantissant ainsi la performance à long terme des systèmes d'énergie renouvelable.

Conduit en PVC LSZH (faible émission de fumée et sans halogène) – Un conduit spécialement formulé pour les environnements clos tels que les tunnels, les bâtiments commerciaux et les transports publics. Il minimise les émissions de fumées toxiques et d'halogènes en cas d'incendie, réduisant ainsi les risques pour la santé et les dommages matériels.

5.2.2 Avantages et inconvénients des conduits en PVC

Avantages :

Résistance à la corrosion et aux produits chimiques – Contrairement aux conduits métalliques, le PVC ne rouille pas et ne se corrode pas, ce qui le rend idéal pour les environnements humides et corrosifs.

Léger et facile à installer – Le PVC est beaucoup plus léger que les conduits métalliques, ce qui réduit les coûts de main-d'œuvre et de transport. Il se découpe et s'assemble facilement à l'aide de colle à solvant.

Isolation électrique – Le PVC étant non conducteur, il ne nécessite pas de mise à la terre, ce qui simplifie l’installation.

Résistance aux intempéries et aux UV – Certains types de conduits en PVC sont résistants aux UV, ce qui les rend adaptés aux applications extérieures.

Rentable – Généralement plus abordable que les conduits métalliques, ce qui en fait une option économique pour diverses installations électriques.

Inconvénients :

Résistance mécanique inférieure – Le PVC n’est pas aussi résistant aux chocs que les conduits métalliques, ce qui le rend moins adapté aux zones soumises à de fortes contraintes mécaniques.

Résistance limitée aux hautes températures – Le PVC peut se déformer ou se dégrader sous l’effet d’une chaleur extrême, ce qui limite son utilisation dans les environnements à haute température.

Expansion et contraction – Le PVC se dilate et se contracte avec les changements de température, ce qui nécessite des joints de dilatation dans certaines installations.

5.2.3 Applications courantes des conduits en PVC

Câblage résidentiel – Utilisé dans les maisons pour protéger les câbles électriques dans les murs, les plafonds et les sols.

Installations commerciales – Idéal pour les immeubles de bureaux, les espaces commerciaux et les entrepôts où une protection non métallique est préférée.

Systèmes souterrains – Fréquemment utilisé pour les lignes électriques enterrées en raison de sa résistance à l’humidité.

Environnements humides et corrosifs – Convient aux environnements industriels exposés à des produits chimiques ou à une humidité élevée.

Projets d'énergie renouvelable – Appliqué dans les installations d’énergie solaire et éolienne pour une protection efficace et durable du câblage.

6. Conclusion

Choisir entre des conduits électriques en métal et en PVC ne se résume pas à déterminer le meilleur matériau : cela dépend de multiples facteurs, notamment la conformité aux normes industrielles, les exigences spécifiques du projet, les contraintes budgétaires et les conditions environnementales. Chaque type de conduit présente ses avantages et ses applications idéales.

Nous espérons que cet article vous a fourni des informations précieuses pour vous aider à prendre une décision éclairée lors de la sélection de solutions de conduits électriques adaptées à vos besoins.

À propos Ctube

Ctube est un fabricant leader avec plus de dix ans d'expérience dans le secteur des conduits de câbles en PVC. Nous sommes spécialisés dans la fourniture de solutions de conduits électriques de haute qualité, garantissant durabilité, sécurité et conformité aux normes internationales. Nos conduits conformes à la norme AS/NZS 2053 et nos conduits de câblage à faible émission de fumée et sans halogène (LSZH) sont conformes aux normes CEI, détiennent les certifications requises et ont été rigoureusement testés parconduit métallique laboratoires tiers.

Pour en savoir plus sur nos produits ou pour vous aider à choisir le bon conduit, n'hésitez pas à nous contacter. Merci de votre lecture !

 

Conduits en PVC conformes à la norme IEC 61386 : tout ce que vous devez savoir En savoir plus "

Guide pour sélectionner le meilleur conduit pour votre projet de fibre optique

Guide pour sélectionner le meilleur conduit pour votre projet de fibre optique

1. Introduction

1.1 Présentation des installations de fibre optique

La technologie de la fibre optique est l'épine dorsale des communications modernes, permettant l'accès à Internet à haut débit, les télécommunications et la transmission de données sur de vastes distances. Les câbles à fibre optique offrent une bande passante exceptionnelle, des taux de transfert de données plus élevés et une perte de signal minimale par rapport aux câbles en cuivre traditionnels, ce qui en fait le choix privilégié pour les infrastructures dans tous les domaines, du haut débit résidentiel aux réseaux de communication mondiaux.

Aperçu des installations de fibre optique

Cependant, aussi efficaces et durables que soient les câbles à fibre optique, ils restent vulnérables aux dommages physiques causés par les facteurs environnementaux, les impacts mécaniques et les interférences. C'est là que l'importance de la protection des conduits devient évidente. Les conduits agissent comme des canaux de protection qui abritent les câbles à fibre optique, les protégeant contre les menaces externes telles que l'humidité, la chaleur excessive, la pression et l'exposition aux UV. Le conduit assure le fonctionnement sûr et fiable des réseaux à fibre optique, réduisant le risque de dégradation du signal, de dommages physiques et de temps d'arrêt coûteux.

Dans les installations de fibre optique, le choix du bon conduit est aussi crucial que le câble lui-même. Le conduit doit être suffisamment robuste pour résister aux risques environnementaux potentiels, permettre une installation facile et permettre une flexibilité à long terme.

1.2 Objectif du guide

Tout au long de ce guide, nous allons explorer les différents types de conduits à fibre optique, leurs propriétés matérielles et leur adéquation à différents environnements d'installation. En comprenant les besoins uniques de votre réseau de fibre optique, vous pouvez faire des choix éclairés qui non seulement offrent une protection fiable, mais améliorent également l'efficacité globale de votre système.

2. Comprendre les conduits à fibre optique

2.1 Qu'est-ce qu'un conduit à fibre optique ?

Un conduit à fibre optique est un tube ou un canal de protection conçu pour abriter et protéger les câbles à fibre optique pendant l'installation. Fabriqués à partir de divers matériaux, ces conduits protègent les câbles à fibre optique délicats des dommages physiques, des dangers environnementaux et des contraintes mécaniques, qui pourraient autrement entraîner une dégradation du signal, une perte de données ou des réparations coûteuses.

Comprendre les conduits à fibre optique

Les conduits sont disponibles dans différentes formes, tailles et matériaux en fonction des besoins spécifiques de l'installation, y compris des options rigides et flexibles, et peuvent être utilisés pour des applications souterraines et aériennes.

2.2 Pourquoi la protection des conduits est essentielle pour les câbles à fibre optique

Les câbles à fibre optique sont extrêmement sensibles. Ils sont constitués de fibres de verre ou de plastique fragiles qui transportent des signaux lumineux pour la transmission de données. Bien que ces câbles offrent d'immenses avantages en termes de vitesse et de bande passante, ils sont vulnérables aux dommages causés par une série de facteurs environnementaux et mécaniques. La protection des conduits est donc un élément essentiel de toute installation de fibre optique.

Pourquoi la protection des conduits est essentielle pour les câbles à fibre optique

Protection contre les dommages matériels:Les câbles à fibre optique sont fragiles et même de légers dommages physiques (comme une flexion, un écrasement ou une traction) peuvent compromettre leurs performances ou les rendre inutilisables. La protection des conduits protège les câbles des contraintes mécaniques externes, telles que les impacts accidentels, la pression des activités de construction ou l'écrasement par d'autres objets lourds.

Protection de l'environnement:Les câbles à fibre optique peuvent être exposés à des éléments environnementaux difficiles qui peuvent entraîner une corrosion ou une dégradation au fil du temps. Par exemple, l'eau, l'humidité ou les changements extrêmes de température peuvent provoquer le gonflement, la flexion ou la perte des capacités de transmission des fibres. Les conduits fournissent une barrière qui aide à empêcher l'intrusion d'humidité et les fluctuations de température d'endommager les câbles.

Résistance aux UV et aux produits chimiques:Dans les installations extérieures, les rayons UV du soleil peuvent dégrader les câbles à fibre optique et leur faire perdre leur efficacité au fil du temps. Certains matériaux, tels que les conduits en PVC avec revêtement résistant aux UV, peuvent protéger les câbles des rayons UV nocifs. De plus, les installations souterraines ou industrielles peuvent exposer les câbles à divers produits chimiques, et le conduit approprié fournit une couche protectrice pour éviter les dommages chimiques aux fibres.

Organisation et simplification de l'installation:Les conduits ont également une fonction organisationnelle. Ils permettent un acheminement structuré, propre et ordonné des câbles, ce qui est essentiel dans les installations à grande échelle. Une bonne organisation améliore non seulement l'esthétique de l'installation, mais simplifie également le dépannage et la maintenance. Elle garantit que les câbles sont facilement accessibles pour toute réparation ou mise à niveau nécessaire.

Facilité d'extension future:Les systèmes à fibre optique sont souvent mis à niveau ou étendus à mesure que les exigences technologiques augmentent. Les conduits offrent un moyen simple d'installer des câbles supplémentaires ou de remplacer des câbles endommagés sans perturber l'ensemble du réseau. La protection des conduits est donc un élément clé pour la pérennité des réseaux à fibre optique.

3. Types de conduits à fibre optique

3.1 Conduits rigides et flexibles

Le choix du bon type de gaine est essentiel pour garantir la sécurité et les performances de votre installation de fibre optique. Il existe deux principaux types de gaines : rigides et flexibles.

conduit rigide

3.1.1 Conduits rigides

Les conduits rigides sont fabriqués à partir de matériaux solides qui offrent une résistance élevée aux forces mécaniques externes. Ils sont généralement utilisés dans les installations où le conduit doit rester dans une position fixe et résister aux dommages causés par les impacts, la pression ou les conditions météorologiques extrêmes. Les matériaux courants pour les conduits rigides comprennent des options métalliques comme l'acier, l'aluminium et le PVC, qui offrent tous deux une excellente protection pour les câbles à fibre optique.

Avantages des conduits rigides :

  • Durabilité:Les conduits rigides peuvent résister aux dommages physiques causés par l’écrasement, les chocs et l’abrasion.
  • Protection sécurisée:Idéal pour les installations souterraines ou extérieures où les câbles à fibres optiques peuvent être exposés à des menaces environnementales telles que la pression de l'eau ou du sol.
  • Résistance aux intempéries:Certains conduits rigides sont conçus pour résister à la dégradation due aux UV, ce qui les rend adaptés à une utilisation en extérieur.

Applications:

  • Utilisé dans les installations souterraines ou extérieures où le conduit n'aura pas besoin d'être ajusté ou réacheminé.
  • Indispensable pour les zones à fort impact comme les chantiers de construction, les installations industrielles ou les bâtiments commerciaux où une protection supplémentaire est nécessaire.

3.1.2 Conduits flexibles

Les conduits flexibles, fabriqués à partir de matériaux tels que le PVC souple ou les composites hybrides, sont conçus pour offrir une grande polyvalence. Ces conduits peuvent se plier facilement, ce qui les rend adaptés aux espaces restreints ou aux zones où le parcours de l'installation peut changer au fil du temps. Les conduits flexibles ont également tendance à être plus légers que les options rigides, ce qui les rend plus faciles à installer dans les zones à accès limité.

conduit flexible en PVC

Avantages des conduits flexibles :

  • Facilité d'installation:La flexibilité permet de les installer rapidement et avec moins de réglages.
  • Adaptabilité:Idéal pour les espaces où le conduit peut devoir être réacheminé ou ajusté, comme dans les équipements ou les centres de données.
  • Léger:Plus facile à manipuler et à installer par rapport aux alternatives rigides.

Applications:

  • Couramment utilisé dans les environnements commerciaux, les bâtiments résidentiels ou les centres de données où l'installation se trouve dans un espace confiné ou où un réacheminement fréquent peut être nécessaire.
  • Convient pour une utilisation dans des locaux électriques ou des zones avec des agencements changeants ou des besoins d'extension futurs.

3.2 Options de matériaux pour les conduits à fibres optiques

Le matériau choisi pour un conduit de fibre optique a un impact significatif sur sa durabilité, ses performances et sa rentabilité. Vous trouverez ci-dessous quelques-uns des matériaux les plus couramment utilisés pour les conduits de fibre optique.

Choix des tailles de conduits rigides en PVC

3.2.1 Conduits en PVC

Le PVC est l'un des matériaux les plus utilisés pour les conduits de fibre optique en raison de son excellent équilibre entre coût, flexibilité et protection. Les conduits en PVC sont légers, durables et faciles à installer. Ils offrent une protection contre l'humidité, l'abrasion et certains produits chimiques, ce qui les rend adaptés à de nombreuses applications intérieures et extérieures.

Avantages des conduits en PVC :

  • Rentable:Le PVC est généralement plus abordable que les alternatives métalliques comme l’acier ou l’aluminium.
  • Résistance à la corrosion:Résistant à l’eau, à de nombreux produits chimiques et à la corrosion, ce qui le rend idéal pour les applications souterraines ou extérieures.
  • Léger:Plus facile à manipuler et à installer par rapport aux conduits métalliques.

Applications:

  • Idéal pour les installations résidentielles, commerciales et industrielles où la facilité d’installation, l’abordabilité et la protection de l’environnement sont des préoccupations essentielles.
  • Couramment utilisé pour les applications intérieures dans des environnements secs ou modérés, ainsi que pour les applications souterraines où l'humidité n'est pas un problème.

conduits flexibles en pvc et acier

3.2.2 Conduits hybrides

Les conduits hybrides combinent la résistance de matériaux comme l'acier ou l'aluminium avec la flexibilité du PVC, créant ainsi une structure hybride qui offre le meilleur des deux mondes. Le revêtement en PVC offre une résistance à l'humidité, tandis que le noyau métallique offre une protection mécanique supérieure.

Avantages des conduits hybrides :

  • Force accrue:Le noyau métallique offre une protection renforcée contre les chocs physiques et l’écrasement.
  • Flexibilité et protection:Le revêtement en PVC ajoute flexibilité et résistance à la corrosion.
  • Versatilité: Convient aux installations où la flexibilité et la protection contre les impacts élevés sont nécessaires.

Applications:

  • Idéal pour les environnements où les câbles à fibre optique nécessitent à la fois flexibilité et protection mécanique élevée, tels que les environnements industriels ou les emplacements avec des interférences physiques fréquentes ou une exposition extérieure.
  • Utilisé dans les zones où les conduits doivent supporter une flexion ou une torsion importante tout en maintenant un niveau élevé de résistance aux chocs.

conduit en fibre de verre

3.2.3 Conduits en fibre de verre

La fibre de verre est un matériau durable et résistant à la corrosion qui offre une excellente protection aux câbles à fibre optique, en particulier dans les environnements difficiles. Les conduits en fibre de verre sont fabriqués en enroulant des brins de fibres de verre autour d'un noyau en résine, créant ainsi un conduit léger mais solide.

Avantages des conduits en fibre de verre :

  • Résistance à la corrosion et aux UV:Excellent pour les environnements exposés à l’humidité, aux produits chimiques ou aux conditions météorologiques extrêmes.
  • Tolérance aux températures élevées:Convient aux zones à forte chaleur ou à températures fluctuantes.
  • Léger et solide:Plus facile à manipuler que les conduits métalliques tout en offrant une résistance comparable.

Applications:

  • Idéal pour les installations marines, chimiques ou offshore, ainsi que pour les environnements industriels où les températures fluctuent.
  • Utilisé pour les applications extérieures et souterraines où des changements d'humidité et de température peuvent se produire.

conduit métallique

3.2.4 Conduits en acier inoxydable

Les conduits en acier inoxydable offrent une protection mécanique exceptionnelle et sont idéaux pour les environnements où une protection contre les chocs importants est essentielle. Ces conduits résistent à la corrosion, sont très durables et peuvent supporter des dommages physiques extrêmes, notamment l'écrasement, l'abrasion et les impacts. L'acier inoxydable offre également une grande résistance aux fluctuations de température et à l'exposition environnementale.

Avantages des conduits en acier inoxydable :

  • Durabilité supérieure:Assez solide pour résister aux forces d’impact élevées et aux dangers environnementaux.
  • Résistance à la corrosion:Ne se dégrade pas lorsqu’il est exposé à des produits chimiques agressifs, à l’eau salée ou à d’autres environnements corrosifs.
  • Résistance au feu:L’acier inoxydable a un point de fusion élevé, ce qui le rend efficace dans les applications résistantes au feu.

Applications:

  • Largement utilisé dans les environnements à haut risque comme les usines de fabrication, les sites de forage en mer ou les zones exposées à des matières dangereuses.
  • Convient aux zones nécessitant une protection renforcée contre les impacts physiques, comme dans les systèmes de transport ou les chantiers de construction.

Conduits électriques tressés

3.2.5 Conduits électriques tressés

Les conduits électriques tressés sont des gaines de protection très flexibles conçues pour protéger les fils et câbles électriques contre les dommages physiques, les abrasions et les risques environnementaux. Généralement fabriqués à partir d'une combinaison de noyaux en plastique ou en métal et de matériaux tressés comme l'acier ou le polyester, ces conduits offrent une durabilité et une résistance à l'usure supérieures. La couche tressée extérieure offre une résistance supplémentaire, ce qui les rend idéaux pour une utilisation dans des applications où les câbles sont exposés à des mouvements constants, à des frottements ou à des conditions difficiles. Leur polyvalence, combinée à une résistance à la corrosion et aux températures extrêmes, en fait une solution incontournable pour les besoins de câblage industriel et commercial.

Avantages des conduits en fibre de verre tressée :

  • Résistance aux chocs et à l'abrasion:L'extérieur tressé offre une protection supplémentaire contre les dommages mécaniques.
  • La flexibilité:Le noyau peut se plier facilement, ce qui le rend adapté aux applications où un routage complexe ou une installation flexible est nécessaire.
  • Performances à haute température:La fibre de verre tressée peut résister à des températures élevées, ce qui la rend idéale pour les environnements industriels.

Applications:

  • Idéal pour les environnements industriels et de construction où les câbles à fibre optique peuvent être exposés aux impacts ou à l'abrasion.
  • Utilisé dans les applications lourdes telles que l'automobile, l'aérospatiale et les environnements industriels à fort trafic.

3.3 Types de conduits spéciaux

Pour les installations nécessitant des fonctionnalités de performance supplémentaires ou répondant à des besoins environnementaux spécifiques, les conduits à fibre optique spécialisés offrent des solutions sur mesure.

Conduit solaire

3.3.1 Conduits solaires résistants aux UV

Conduits solaires résistants aux UV sont spécifiquement conçus pour résister à une exposition prolongée aux rayons ultraviolets (UV) du soleil. Ces conduits sont généralement fabriqués à partir de matériaux qui ont été formulés ou traités pour résister à la dégradation due aux rayons UV, garantissant ainsi qu'ils conservent leur intégrité structurelle et leur fonctionnalité au fil du temps. Ceci est crucial pour les installations électriques extérieures, en particulier dans les systèmes d'énergie solaire, où les conduits sont exposés à la lumière directe du soleil pendant des périodes prolongées.

Applications:

  • Largement utilisé dans les installations d'énergie solaire, où les conduits doivent protéger le câblage des dommages causés par les UV lorsqu'il fonctionne à l'extérieur, souvent dans des zones exposées.
  • Idéal pour les installations électriques extérieures dans les zones à forte exposition au soleil, telles que les toits, les parkings et les fermes solaires.
  • Convient pour une utilisation dans les environnements résidentiels, commerciaux et industriels, en particulier dans les systèmes de panneaux solaires et les projets d'énergie renouvelable.
  • Essentiel dans les régions aux climats extrêmes où le rayonnement UV est intense et pourrait conduire à la dégradation des matériaux des conduits standard, entraînant potentiellement une défaillance prématurée ou des risques pour la sécurité.

essai au feu de conduit rigide lszh

3.3.2 Conduits à faible émission de fumée et sans halogène (LSHF)

Conduits à faible émission de fumée et sans halogène (LSHF) sont conçus pour empêcher la libération de gaz halogènes toxiques lors d'un incendie. Ces conduits sont idéaux pour les environnements à haut risque où la sécurité du personnel et des équipements est une priorité. Ils minimisent les émissions de fumée et de gaz dangereux, qui pourraient être mortelles en cas d'incendie.

Avantages des conduits LSHF :

  • Sécurité incendie : Les conduits ne libèrent pas de gaz toxiques lorsqu’ils sont exposés aux flammes, réduisant ainsi les risques pour la santé en cas d’incendie.
  • Sécurité environnementale:Ils constituent également un choix plus sûr dans les bâtiments écologiques et les installations respectueuses de l’environnement.
  • Faible émission de fumée : Idéal pour les zones où la fumée pourrait obstruer la visibilité ou créer des risques de sécurité supplémentaires en cas d'urgence.

Applications:

  • Généralement utilisé dans les centres de données, les hôpitaux, les aéroports et autres infrastructures critiques où les préoccupations en matière de sécurité et d’environnement sont primordiales.
  • Idéal pour les zones à fort trafic piétonnier ou les environnements où un incendie pourrait causer des dommages importants à l'équipement ou au personnel.

 

4. Facteurs à prendre en compte lors du choix d'un conduit à fibre optique

 

4.1 Conditions environnementales

Lors de la sélection d'un conduit à fibre optique, les conditions environnementales dans lesquelles il sera installé sont l'un des facteurs les plus critiques à prendre en compte. Les câbles à fibre optique sont sensibles aux températures extrêmes, à l'humidité et à l'exposition à des produits chimiques agressifs. Le conduit choisi doit donc être capable de les protéger de manière adéquate.

Facteurs à prendre en compte lors du choix d'un conduit à fibre optique

Températures extrêmes:Les câbles à fibre optique peuvent se dégrader s'ils sont exposés à des températures supérieures à leurs limites nominales. Pour les installations dans des zones extrêmement chaudes ou froides, il est essentiel de choisir un conduit capable de résister à ces fluctuations de température sans compromettre ses performances. Les conduits en fibre de verre et en acier inoxydable sont d'excellents choix dans ces cas, car ils résistent aux températures extrêmes et conservent leur intégrité structurelle dans un large éventail de conditions.

Exposition à l'humidité et aux produits chimiques:Dans les environnements exposés à l'humidité, à la moisissure ou aux produits chimiques (tels que les installations souterraines, les usines industrielles ou les environnements marins), le choix du bon matériau de conduit est essentiel pour protéger les câbles à fibre optique. La fibre de verre et l'acier inoxydable sont connus pour leur résistance à la corrosion, ce qui les rend idéaux pour de telles applications. Les conduits métalliques revêtus de PVC peuvent également offrir une couche de protection supplémentaire contre les dommages chimiques, offrant une durabilité tout en restant rentables.

 

4.2 Exigences relatives au rayon de courbure

Le rayon de courbure est un facteur essentiel lors de l'installation de câbles à fibre optique. Les câbles à fibre optique peuvent être endommagés s'ils sont pliés trop fortement, ce qui entraîne des problèmes de performances tels qu'une perte de signal ou même des dommages physiques aux fibres. Par conséquent, le type de conduit sélectionné doit s'adapter au rayon de courbure requis pour l'installation.

Exigences relatives au rayon de courbure

Comprendre le rayon de courbure:Chaque type de conduit et de câble à fibre optique possède un rayon de courbure minimal spécifique, qui correspond à la courbe la plus serrée que le câble ou le conduit peut être plié sans causer de dommages. Les conduits flexibles ont généralement un rayon de courbure beaucoup plus petit que les conduits rigides, ce qui les rend adaptés aux applications où des courbures serrées sont nécessaires. En revanche, les conduits rigides sont mieux adaptés aux installations avec des parcours plus longs et plus droits.

Considérations relatives au dimensionnement et à la disposition des conduits:Pour garantir que les câbles à fibre optique ne dépassent pas leur rayon de courbure minimal, il est essentiel de planifier soigneusement la disposition des conduits. Les conduits flexibles comme le PVC ou les matériaux hybrides sont d'excellents choix lorsque l'installation implique des espaces restreints ou un routage complexe. Les conduits rigides, bien que plus durables, peuvent ne pas être aussi adaptables aux configurations complexes où des courbures fréquentes sont nécessaires.

 

4.3 Taux de remplissage du conduit

Le taux de remplissage du conduit fait référence à la quantité d'espace occupé à l'intérieur du conduit par les câbles, en pourcentage du volume interne total du conduit. Il s'agit d'un facteur crucial à prendre en compte, car un remplissage excessif du conduit peut entraîner une surchauffe, des difficultés d'installation des câbles et, dans les cas extrêmes, des dommages aux câbles.

Taux de remplissage des conduits

Importance d'un taux de remplissage approprié:Le remplissage excessif d'un conduit peut entraîner plusieurs problèmes, notamment la dégradation des câbles en raison d'une accumulation excessive de chaleur et des difficultés lors de l'installation ou de la mise à niveau ultérieure des câbles. Les normes industrielles recommandent généralement que pas plus de 40 à 50 % de l'espace interne du conduit ne soit occupé par des câbles pour permettre une circulation d'air suffisante et une maintenance aisée.

Normes industrielles pour les taux de remplissage:Les organismes de normalisation, tels que le National Electrical Code (NEC), fournissent des directives sur les taux de remplissage acceptables en fonction du type de conduit utilisé. Le respect de ces normes garantit que les câbles à fibre optique peuvent fonctionner de manière optimale sans risque de dommages dus à un surpeuplement ou à une ventilation inadéquate.

4.4 Protection contre les dommages matériels

Les câbles à fibre optique sont fragiles et peuvent facilement être endommagés par des forces physiques telles que l'écrasement, la perforation ou l'abrasion. Pour éviter cela, le conduit choisi doit offrir une protection adéquate contre les impacts mécaniques externes.

Résistance aux chocs:Dans les environnements à forte circulation piétonnière, aux machines industrielles ou aux impacts physiques potentiels, il est essentiel d'utiliser un conduit capable de résister à l'écrasement et à d'autres formes de dommages. Les conduits métalliques, tels que l'acier galvanisé ou l'acier inoxydable, offrent une résistance supérieure aux chocs et sont souvent utilisés dans les environnements où les câbles risquent d'être endommagés physiquement. Ces matériaux constituent une barrière solide, empêchant toute pression externe d'affecter l'intégrité des câbles à fibre optique.

Couvertures et boucliers supplémentaires:Dans certaines applications, des mesures de protection supplémentaires telles que des capots résistants aux chocs ou des conduits blindés peuvent s'avérer nécessaires. Ces options offrent une protection supplémentaire dans les zones où le risque de dommages est particulièrement élevé, comme les zones de construction, les systèmes de transport ou les installations extérieures.

4.5 Résistance aux UV et durabilité

Lors de l'installation de conduits de fibre optique à l'extérieur ou dans des zones exposées à la lumière directe du soleil, la résistance aux UV est essentielle. Une exposition prolongée aux rayons UV peut dégrader certains matériaux, entraînant une fragilité, des fissures et une défaillance générale du conduit.

Résistance aux UV:Les conduits exposés au soleil doivent être résistants aux UV pour éviter la dégradation du matériau. Les conduits en PVC avec protection UV supplémentaire sont couramment utilisés pour les applications extérieures. Les matériaux PVC hybrides qui combinent la flexibilité du PVC avec la durabilité accrue du métal sont également un excellent choix lorsque la résistance aux UV est requise.

Durabilité dans le temps:La durabilité est une considération à long terme pour toute installation de conduit. Un conduit doit non seulement être capable de résister aux conditions environnementales initiales, mais également de fonctionner efficacement pendant de nombreuses années. La fibre de verre, le métal recouvert de PVC et l'acier inoxydable sont parmi les options les plus durables pour les installations de fibre optique, offrant une protection durable dans les environnements intérieurs et extérieurs.

5. Spécifications clés des conduits Référence pour le choix des conduits

Lors de la sélection du conduit de fibre optique approprié pour votre projet, il est essentiel de prendre en compte une gamme de spécifications qui garantissent la durabilité, la sécurité et les performances à long terme.

5.1 Indice de protection IP

Le système de classification IP (Ingress Protection) définit le niveau de protection qu'offre un conduit contre l'intrusion de solides (comme la poussière) et de liquides (comme l'eau). Il est particulièrement important dans les environnements où le conduit peut être exposé à des conditions difficiles, notamment la pluie, l'humidité ou la poussière. L'indice IP se compose de deux chiffres : le premier indique la protection contre les objets solides et le second fait référence à la protection contre les liquides.

Premier chiffre (protection solide):De 0 à 6, 0 indiquant aucune protection et 6 offrant une protection complète contre la pénétration de poussière.

Deuxième chiffre (protection liquide):De 0 à 9, 0 indiquant aucune protection et 9 fournissant une protection contre les jets d'eau à haute pression et à haute température.

Protection contre l'eau et l'humidité:Pour les systèmes à fibre optique utilisés dans des environnements extérieurs, souterrains ou industriels, la sélection d'un conduit avec un indice IP approprié permet de protéger les câbles contre les dommages causés par l'infiltration d'eau, ce qui pourrait entraîner une perte de signal ou une défaillance de l'équipement.

Protection contre la poussière et les débris:Dans des environnements tels que les usines de fabrication, les chantiers de construction ou les zones côtières, la poussière et les débris peuvent s'accumuler à l'intérieur des conduits, ce qui peut endommager les fibres. Un indice IP élevé garantit l'intégrité de l'installation.

IP67

Par exemple, Ctube propose une gamme de produits conçus pour répondre à l'indice d'étanchéité IP67, garantissant une protection contre la poussière et l'immersion temporaire dans l'eau. IP67 signifie que le produit est étanche à la poussière (aucune poussière ne peut pénétrer) et peut être immergé dans l'eau jusqu'à 1 mètre pendant 30 minutes sans dommage.

5.2 Plage de température

Le choix d'un conduit présentant la résistance thermique adéquate est essentiel pour maintenir les performances et l'intégrité des câbles à fibre optique, en particulier dans les environnements soumis à des fluctuations de température extrêmes. La plage de température d'un conduit fait référence aux températures les plus basses et les plus élevées auxquelles il peut fonctionner en toute sécurité sans devenir cassant ou perdre en flexibilité.

Plage de température

Résistance aux basses températures:Dans les climats froids ou les zones réfrigérées, les conduits doivent pouvoir résister aux basses températures sans se fissurer ni devenir cassants. Les câbles à fibre optique et leurs conduits sont particulièrement vulnérables aux dommages causés par le gel.

Résistance à la chaleur:Dans les zones à forte chaleur (telles que les installations industrielles, les centres de données ou les environnements extérieurs exposés directement au soleil), le conduit doit pouvoir résister à la déformation ou à la dégradation en cas d'exposition prolongée à des températures élevées.

Protection du câble:Les températures extrêmes peuvent provoquer la dilatation, la contraction ou l'endommagement des câbles à fibre optique. Un conduit capable de supporter à la fois le froid et la chaleur extrêmes contribue à garantir la longévité et les performances de l'ensemble du système à fibre optique.

Maintien de l'intégrité du signal:Une chaleur excessive peut endommager l'isolation autour des câbles à fibre optique, entraînant une dégradation du signal. Le choix d'un conduit doté d'une résistance thermique appropriée garantit une transmission et une protection stables.

Les conduits à fibre optique sont fabriqués dans différents matériaux, chacun ayant sa propre plage de température. Les conduits en PVC supportent généralement des températures comprises entre -20 °C et 60 °C (-4 °F et 140 °F), ce qui les rend adaptés aux environnements modérés. Le PVC flexible offre une plus grande flexibilité de température, avec une plage de -30 °C à 70 °C (-22 °F à 158 °F), ce qui lui permet de résister à des conditions plus froides et plus chaudes. Les conduits en fibre de verre sont les plus résistants à la température, capables de supporter des extrêmes de -40 °C à 120 °C (-40 °F à 248 °F), ce qui les rend idéaux pour les applications difficiles et à haute température.

Conduits et raccords ctube

Les plages de température fournies ci-dessus sont fournies à titre indicatif uniquement et doivent être vérifiées auprès du fournisseur pour des produits spécifiques. Par exemple, Conduits en PVC de Ctube sont évalués pour des températures comprises entre -15 °C et 105 °C (5 °F à 221 °F), tandis que leurs produits sans halogène à faible dégagement de fumée peuvent supporter des températures de -45 °C à 150 °C (-49 °F à 302 °F).

5.3 Normes de sécurité incendie

Il est essentiel de choisir un conduit conforme aux normes de sécurité incendie pour minimiser les risques d'incendie et protéger le personnel et l'équipement. Les indices de résistance au feu garantissent que le matériau du conduit peut résister à l'exposition au feu ou à une chaleur élevée, ou dans certains cas, empêcher la propagation des flammes.

Normes de sécurité incendie

NEC (Code national de l'électricité):Le NEC établit des normes pour l'installation de systèmes électriques, y compris les câbles à fibre optique. Les matériaux de conduit conformes au NEC doivent respecter des exigences spécifiques en matière de résistance au feu et de retardement de flamme pour empêcher la propagation des flammes en cas d'incendie.

Faible émission de fumée et sans halogène (LSHF):Pour les environnements où la sécurité du personnel est une préoccupation, comme les hôpitaux, les aéroports ou les centres de données, les conduits à faible émission de fumée et sans halogène (LSHF) sont essentiels. Ces conduits minimisent la quantité de fumée et de gaz toxiques libérés en cas d'incendie, réduisant ainsi les risques pour la santé et améliorant les temps d'évacuation.

RoHS (Restriction des substances dangereuses):La certification RoHS garantit que le conduit est exempt de matières dangereuses, telles que le plomb, le mercure, le cadmium et d'autres substances toxiques. Cette certification est particulièrement importante dans les installations ou les zones écologiquement sensibles où les réglementations en matière de santé et de sécurité sont strictes.

Homologué UL:Une homologation UL indique que le conduit a été testé par Underwriters Laboratories (UL) et qu'il répond aux normes de sécurité pour l'utilisation prévue. Les conduits homologués UL sont soumis à des tests rigoureux pour garantir leurs performances, notamment leur résistance au feu, leur résistance aux chocs et leur sécurité électrique. Cette certification garantit que le produit peut être utilisé en toute sécurité dans les installations de fibre optique.

CSA (Association canadienne de normalisation):Pour les installations au Canada, la certification CSA garantit que le conduit répond aux normes de sécurité et de performance.

Marquage CE:Pour les produits vendus dans l'Union européenne, le marquage CE indique que le produit est conforme aux réglementations de l'UE en matière de santé, de sécurité et d'environnement.

6. Conduit à fibre optique pour applications spécifiques

Les câbles à fibre optique sont essentiels pour les systèmes de communication à haut débit, et le type de conduit utilisé pour leur installation joue un rôle crucial pour garantir des performances, une sécurité et une durabilité optimales. Différentes applications, qu'elles soient souterraines, aériennes, à l'intérieur des bâtiments ou dans des environnements spécialisés, nécessitent chacune des solutions de conduits spécifiques adaptées aux conditions uniques qu'elles présentent. Ci-dessous, nous explorerons les meilleures pratiques et les recommandations de conduits pour divers environnements d'installation de fibre optique.

6.1 Installations souterraines de fibres optiques

Les installations souterraines de fibre optique nécessitent des systèmes de conduits capables de protéger les câbles des facteurs environnementaux tels que la pression du sol, l'humidité, l'exposition aux produits chimiques et les dommages mécaniques causés par le creusement ou d'autres activités souterraines. Le bon conduit garantit une durabilité à long terme et empêche la dégradation ou la défaillance des fibres.

Installations souterraines de fibre optique

Conduit rigide en PVC: Offre une excellente protection contre les dommages physiques et la corrosion, ce qui le rend idéal pour une utilisation souterraine où l'humidité et la pression peuvent poser problème. Il est léger et résistant aux produits chimiques présents dans le sol.

Conduit en PEHD (polyéthylène haute densité):Ce conduit flexible et durable est couramment utilisé pour les installations souterraines en raison de sa résistance aux chocs, aux rayons UV et de sa flexibilité, ce qui facilite son installation autour des courbes et des obstacles. Il est particulièrement utile pour les installations de forage directionnel.

Conduit en fibre de verre:Un excellent choix pour les environnements avec un sol hautement corrosif ou des conditions extrêmes. Il offre une résistance aux produits chimiques et aux températures élevées, garantissant ainsi la protection des câbles à fibre optique sur de longues périodes.

6.2 Installations aériennes de fibre optique

Les installations aériennes de fibre optique nécessitent des conduits capables de résister aux éléments, tels que le vent, les rayons UV et les variations de température. Le conduit doit également être capable de supporter le poids du câble à fibre optique et d'assurer sa protection contre les dommages externes.

Installations aériennes de fibre optique

Conduit en PVC résistant aux UV:Les conduits en PVC standard avec additifs résistants aux UV sont souvent utilisés dans les installations aériennes car ils peuvent résister à la dégradation causée par une exposition prolongée au soleil.

Conduit en acier (galvanisé ou inoxydable):Les conduits en acier sont excellents pour les installations aériennes en raison de leur robustesse et de leur capacité à résister aux conditions climatiques extrêmes, notamment aux vents violents et aux impacts physiques. L'acier galvanisé, en particulier, offre une protection supplémentaire contre la corrosion.

Conduite en polymère renforcé de fibres (FRP)t : Les conduits FRP offrent un équilibre optimal entre résistance, légèreté et résistance aux facteurs environnementaux, ce qui les rend adaptés aux installations de câbles à fibre optique aériens.

6.3 Installations de fibre optique à l'intérieur des bâtiments

Les installations à l'intérieur des bâtiments se font souvent dans les murs, les plafonds ou les conduits qui longent les sols ou les toits des bâtiments commerciaux, industriels ou résidentiels. Ces installations nécessitent des conduits faciles à installer, flexibles et offrant une protection suffisante contre les risques internes potentiels tels que les incendies ou les chocs.

Spécifications clés des conduits Référence pour le choix des conduits

Un conduit flexible:Les options de conduits flexibles telles que les conduits flexibles en PVC ou LSZH (faible émission de fumée et zéro halogène) sont couramment utilisées dans les installations à l'intérieur des bâtiments en raison de leur flexibilité et de leur facilité d'installation. Les conduits flexibles sont idéaux pour le routage dans les coins ou dans les espaces restreints sans nécessiter de raccords supplémentaires.

Conduit rigide en PVC:Dans les zones où une protection mécanique supplémentaire est nécessaire, les conduits en PVC rigides offrent une excellente protection contre les dommages physiques et ont une résistance à l'écrasement plus élevée que les alternatives flexibles.

Conduit métallique (EMT ou IMC):Dans certains bâtiments commerciaux ou industriels, des conduits métalliques tels que des tubes électriques métalliques (EMT) ou des conduits métalliques intermédiaires (IMC) sont utilisés pour une protection physique améliorée, en particulier dans les zones sujettes aux dommages mécaniques ou aux risques d'incendie.

7. Bonnes pratiques pour l'installation de conduits à fibre optique

L'installation correcte des conduits de fibre optique est essentielle pour garantir les performances à long terme, la durabilité et la sécurité de votre réseau de fibre optique. Vous trouverez ci-dessous les meilleures pratiques clés à suivre lors des phases de planification, d'installation et de maintenance des systèmes de conduits de fibre optique.

Bonnes pratiques pour l'installation de conduits à fibre optique

7.1 Planification du chemin du conduit

La première étape de toute installation réussie de conduits de fibre optique est une planification minutieuse. Une conception de chemin appropriée garantit un routage efficace des câbles, minimise le risque de dommages physiques et garantit la conformité aux normes réglementaires.

Effectuer une étude de site:Avant de commencer, effectuez une étude approfondie du site pour évaluer l'environnement. Identifiez les obstacles potentiels tels que les services publics souterrains, les arbres ou les bâtiments qui pourraient affecter le tracé du conduit. Cette étude permet de déterminer le chemin le plus efficace pour l'installation.

Pensez à l’accessibilité: Assurez-vous que le chemin du conduit est facilement accessible pour les opérations de maintenance, de réparation ou de mise à niveau futures. Évitez de placer les conduits dans des endroits difficiles d'accès, comme derrière des murs ou des sols permanents.

Autoriser l'expansion:Planifiez le cheminement du conduit en fonction d'une future expansion. Les réseaux de fibre optique peuvent nécessiter une capacité supplémentaire à mesure que la demande augmente. Il est donc judicieux de laisser de la place pour ajouter des câbles ou des conduits de rechange si nécessaire.

Suivre les réglementations: Assurez-vous que le cheminement de votre conduit est conforme aux réglementations locales et internationales, telles que le NEC (National Electrical Code) pour les installations électriques et tout code spécifique pour la fibre optique. Ces réglementations régissent la longueur du conduit, sa courbure et les méthodes utilisées pour le fixer et l'étanchéifier.

7.2 Assurer un dimensionnement approprié

Le choix de la taille appropriée du conduit de fibre optique est essentiel pour la protection des câbles et l'utilisation efficace de l'espace disponible. Un dimensionnement approprié garantit que les câbles s'insèrent facilement dans le conduit et qu'il y a suffisamment d'espace pour d'éventuelles extensions futures.

Suivez les directives de remplissage des conduits:Le Code national de l'électricité (NEC) recommande de remplir un conduit à un maximum de 40% de sa capacité totale pour les câbles à fibre optique. Cela permet une circulation d'air, réduit le risque d'accumulation de chaleur et facilite l'installation des futurs câbles.

Tenir compte du type et de la quantité de câbles:Les câbles à fibre optique varient en taille, il est donc important de tenir compte du type spécifique de câbles à fibre optique utilisés, notamment de leur diamètre et du nombre de câbles que vous prévoyez d'installer. Par exemple, un faisceau de plusieurs câbles à fibre optique nécessitera un conduit plus grand qu'un seul câble.

Tenir compte du rayon de courbure:Les câbles à fibre optique ont un rayon de courbure limité et le conduit doit être suffisamment large pour accueillir les câbles sans les forcer à prendre des virages serrés. L'installation d'un conduit trop petit peut entraîner une tension du câble, ce qui peut dégrader les performances ou même endommager les câbles. Assurez-vous que le conduit permet le rayon de courbure minimum du fabricant.

7.3 Conseils d'installation courants

Étanchéité et assemblage corrects:Lorsque vous raccordez plusieurs longueurs de conduit, il est important d'utiliser les bons connecteurs et de vous assurer que les joints sont correctement scellés. Si les joints des conduits ne sont pas correctement scellés, l'humidité, la saleté et d'autres débris peuvent pénétrer dans le conduit, endommageant ainsi les câbles à fibre optique au fil du temps.

Attention au support des conduits:Les conduits doivent être soutenus à intervalles réguliers pour éviter tout affaissement et garantir leur stabilité. Utilisez des supports et des cintres appropriés conformément aux directives du fabricant du conduit. Les conduits non soutenus peuvent se déplacer au fil du temps ou être endommagés, ce qui peut entraîner des problèmes lors de l'installation de la fibre optique.

Mise à la terre et liaison:Les conduits de fibre optique, en particulier les conduits métalliques, doivent être correctement mis à la terre et reliés entre eux pour éviter les interférences ou les dangers électriques. Une mise à la terre incorrecte peut entraîner une dégradation du signal ou des problèmes de sécurité. Suivez les procédures de mise à la terre conformément aux normes du secteur.

Entretien des conduits de fibre optique: L'entretien régulier des conduits de fibre optique est essentiel pour garantir que le réseau reste fiable et fonctionnel au fil du temps. Commencez par inspecter périodiquement le conduit pour détecter tout signe de dommage physique, tel que des fissures, des bosses ou des déformations, qui peuvent compromettre son intégrité. De plus, la poussière, la saleté et les débris peuvent s'accumuler à l'intérieur du conduit, en particulier dans les zones exposées aux éléments, ce qui peut potentiellement entraver les performances des câbles à fibre optique.

Utilisez des méthodes de nettoyage appropriées pour garder le conduit exempt de toute obstruction. Il est également important de vérifier que tous les joints du conduit sont intacts pour empêcher l'humidité de pénétrer, en particulier dans les installations souterraines ou extérieures. Dans de tels cas, envisagez d'utiliser des barrières contre l'humidité ou des conduits résistants à l'eau pour protéger le système. Une attention régulière à ces facteurs contribuera à maintenir l'efficacité du conduit et à prolonger la durée de vie du réseau de fibre optique.

8. Considérations relatives aux coûts

Lors de la sélection des conduits de fibre optique, le coût est un facteur crucial qui a un impact à la fois sur l'installation initiale et sur le budget opérationnel à long terme. Une compréhension complète des coûts impliqués permet de prendre des décisions éclairées qui équilibrent les contraintes budgétaires avec les exigences de performance et de durabilité.

considérations de coût

8.1 Coûts d'installation initiaux et maintenance et durabilité à long terme

Le coût d’installation initial comprend les dépenses liées à l’achat de matériaux de conduit, à la main-d’œuvre pour l’installation et à tous les accessoires ou connecteurs nécessaires.

Choix des matériaux:Les différents matériaux de conduits sont proposés à des prix différents. Par exemple, les conduits en PVC sont généralement plus abordables que les systèmes de conduits en acier inoxydable ou hybrides. Le choix du matériau aura une incidence directe sur le coût initial.

Taille et longueur du conduit:Les conduits de plus grand diamètre ou ceux installés sur de plus longues distances augmenteront les coûts des matériaux. De plus, les chemins d'installation plus élaborés qui nécessitent des travaux de creusement, de tranchées ou des installations aériennes peuvent faire augmenter les coûts de main-d'œuvre.

Main d'oeuvre d'installation:Les coûts de main-d'œuvre varient en fonction de la complexité de l'installation. Par exemple, l'installation d'un conduit de fibre optique dans un environnement souterrain peut nécessiter des processus plus exigeants en main-d'œuvre, comme le creusement de tranchées, qui peuvent être plus coûteux que les installations aériennes ou à l'intérieur d'un bâtiment.

Conduits spécialisés:Si l'installation nécessite des conduits spéciaux, tels que des conduits sans halogène à faible émission de fumée ou des options résistantes à la corrosion pour les environnements difficiles, cela peut augmenter les coûts initiaux. Ces types de conduits sont souvent plus chers en raison de leurs avantages spécifiques en matière de sécurité ou d'environnement.

Bien que les coûts initiaux soient importants, l'entretien à long terme et la durabilité du système de conduits peuvent souvent dépasser l'investissement initial. Les facteurs qui influencent les coûts à long terme comprennent :

Durabilité du matériau:La durée de vie du matériau des conduits joue un rôle important dans la réduction des coûts de maintenance. Un système de conduits durable qui résiste aux dommages causés par les impacts physiques, l'infiltration d'humidité ou les fluctuations de température entraînera des coûts de réparation et de remplacement inférieurs. Le choix d'options moins coûteuses et moins durables peut entraîner des coûts à long terme plus élevés en raison de la nécessité de réparations ou de remplacements fréquents du système.

8.2 Mesures d’économie

Même s’il peut sembler que le choix de matériaux de conduit moins chers soit toujours l’option la plus rentable, il existe plusieurs stratégies pour réduire les coûts à court terme sans sacrifier les performances ou la durabilité.

Dimensionnement optimal des conduits: Un dimensionnement approprié du conduit pour éviter un remplissage excessif ou insuffisant peut permettre d'économiser de l'argent sur les matériaux et sur le processus d'installation. Les conduits trop grands peuvent entraîner un gaspillage de matériaux, tandis que ceux qui sont trop petits peuvent nécessiter des mises à niveau ou des réparations coûteuses ultérieurement.

Conduits et accessoires préfabriqués:Dans certains cas, opter pour des systèmes de conduits préfabriqués peut réduire les coûts de main-d'œuvre et le temps d'installation. Les connecteurs, coudes et raccords préfabriqués peuvent réduire le besoin de fabrication sur mesure, ce qui conduit à une installation plus rapide et moins coûteuse.

Regroupement de câbles:L'installation de plusieurs câbles à fibre optique dans un seul conduit, lorsque cela est possible, peut réduire le nombre total de conduits nécessaires, ce qui permet d'économiser à la fois sur les coûts de matériaux et de main-d'œuvre. Cette méthode réduit également la complexité et le temps d'installation.

9. Conclusion

Pour faire le meilleur choix pour votre projet de fibre optique, il est recommandé d'évaluer soigneusement l'environnement d'installation et ses exigences spécifiques. Par exemple, les installations souterraines peuvent nécessiter des conduits plus robustes et résistants à la corrosion, tandis que les installations aériennes peuvent privilégier la flexibilité et la durabilité dans différentes conditions. Et le respect des normes et certifications du secteur, telles que la conformité RoHS ou les classifications UL, garantit que l'installation répond aux réglementations de sécurité et de qualité.

De plus, il est essentiel de comprendre l’importance des spécifications clés telles que les indices de protection (IP), la plage de température et les normes de sécurité incendie pour garantir que le conduit peut résister aux conditions environnementales et fournir une protection à long terme aux câbles à fibre optique.

Il est fortement conseillé de travailler avec des professionnels de l'industrie ou des fabricants de conduits, car ils peuvent offrir des informations en fonction de l'échelle, de l'emplacement et du budget de votre projet.

Pour ceux qui recherchent des conduits fiables et de haute qualité et raccords solutions, Ctube, fabricant professionnel de conduits en PVC et spéciaux, propose une gamme complète de produits conçus pour répondre aux besoins spécifiques des installations de fibre optique. Avec un engagement envers la durabilité, la sécurité et la performance, Ctube propose des options de conduits testées pour résister aux environnements extrêmes, garantissant la protection de votre précieuse infrastructure de fibre optique. La vaste expertise de Ctube et ses conceptions de produits innovantes en font un partenaire idéal pour vos besoins en conduits de fibre optique.

Merci de votre lecture et bonne chance dans vos projets.

FAQ

FAQ

 

1. Puis-je utiliser un conduit en PVC pour les câbles à fibres optiques ?

Oui, les conduits en PVC sont souvent utilisés pour les installations de fibre optique car ils offrent un bon équilibre entre flexibilité, rentabilité et facilité d'installation. Cependant, lors de la sélection d'un conduit en PVC, assurez-vous qu'il est adapté à l'application spécifique, qu'il soit destiné à une utilisation souterraine ou intérieure.

 

2. Comment calculer la taille appropriée du conduit à fibre optique ?

Pour calculer la taille appropriée du conduit de fibre optique, vous devez prendre en compte le diamètre total des câbles utilisés, ainsi que le taux de remplissage du conduit. Une règle générale consiste à utiliser les calculs de remplissage du National Electrical Code (NEC), qui recommandent que le conduit ne soit pas rempli à plus de 40% de câbles pour laisser de l'espace pour une expansion future et pour assurer une circulation d'air adéquate pour le refroidissement. Il est important de mesurer avec précision le nombre de câbles et leur diamètre pour éviter un remplissage excessif.

 

3. Que sont les conduits sans halogène à faible dégagement de fumée et quand dois-je les utiliser ?

Les conduits sans halogène à faible émission de fumée sont conçus pour les installations où la sécurité incendie est une préoccupation majeure, comme dans les hôpitaux, les centres de données ou les zones contenant des appareils électroniques sensibles. Ces conduits émettent peu ou pas de fumée ou de gaz toxiques lorsqu'ils sont exposés au feu, ce qui est essentiel pour protéger le personnel et l'équipement. Si votre installation se trouve dans un espace confiné ou un environnement à haut risque, ces types de conduits doivent être envisagés.

 

Guide pour sélectionner le meilleur conduit pour votre projet de fibre optique En savoir plus "

Comment connecter un conduit flexible à un boîtier électrique : un guide étape par étape

Comment raccorder un conduit flexible à une boîte électrique : Un guide étape par étape

1. Introduction

Le conduit flexible est un composant polyvalent et essentiel des systèmes électriques modernes, offrant protection et flexibilité aux fils dans diverses applications. Contrairement aux conduits rigides, les conduits flexibles peuvent se plier et s'adapter à des configurations difficiles, ce qui les rend idéaux pour les espaces avec des coins serrés, des formes irrégulières ou des ajustements fréquents. Que ce soit dans les sous-sols résidentiels, les bureaux commerciaux ou les installations industrielles, les conduits flexibles jouent un rôle essentiel dans la protection des câbles contre les dommages mécaniques, les risques environnementaux et l'usure. Ils sont généralement fabriqués à partir de matériaux tels que le plastique, le métal ou une combinaison des deux, ce qui garantit leur durabilité et leur adaptabilité à divers environnements.

Raccordement d'un conduit flexible en PVC et d'une boîte de jonction blanche

Le raccordement correct d'un conduit flexible à une boîte électrique n'est pas seulement une question de commodité ; c'est une étape fondamentale pour assurer la sécurité et l'efficacité de l'ensemble du système électrique. Une connexion sûre empêche les fils d'être exposés à des conditions nocives telles que l'humidité, les contraintes mécaniques ou le délogement accidentel. En outre, le respect de pratiques d'installation correctes aide à maintenir la conformité avec les codes électriques tels que le code national de l'électricité (NEC), qui est obligatoire pour des installations sûres et légalement solides. Le non-respect de ces normes peut entraîner des réparations coûteuses, des sanctions, voire des risques pour la sécurité.

Ce guide présente les connaissances et les techniques nécessaires pour créer une connexion sûre et conforme au code entre un conduit flexible et une boîte électrique. 

2. Outils et matériel nécessaires

les différents types de conduits flexibles

Pour raccorder correctement un conduit flexible à une boîte électrique, il est essentiel de bien comprendre les outils et les matériaux requis. Chaque élément a une fonction spécifique, garantissant que l'installation est sûre, conforme aux codes électriques et capable de résister aux contraintes environnementales ou opérationnelles.

2.1 Types de conduits flexibles

Les conduits flexibles constituent l'épine dorsale de ce processus de connexion, en fournissant une enveloppe protectrice pour les fils électriques. Voici quelques exemples de conduits flexibles couramment utilisés. Le choix du bon type de conduit est essentiel pour s'adapter à l'environnement de l'installation.

Conduit flexible étanche (LFMC): Le LFMC est constitué d'une âme métallique durable enveloppée d'une gaine en PVC résistant à l'humidité. Il est spécialement conçu pour les environnements extérieurs ou humides, tels que les systèmes CVC, l'éclairage extérieur ou les zones exposées aux éclaboussures et à la pluie. Sa conception étanche empêche l'humidité d'atteindre les fils électriques, garantissant ainsi sécurité et longévité.

Conduit flexible métallique (FMC): Souvent appelé conduit "Greenfield", le FMC est constitué de bandes métalliques emboîtées, offrant une solution robuste et flexible pour les environnements intérieurs. Il est idéal pour les applications industrielles et commerciales où la protection mécanique est une priorité, comme dans les salles d'équipement ou les usines. Le FMC permet également la mise à la terre lorsqu'il est associé à des boîtes métalliques.

Conduit flexible non métallique (NMFC)) : Léger et résistant à la corrosion, le NMFC est un conduit à base de plastique généralement fabriqué en PVC ou en polyéthylène. Il convient parfaitement aux installations résidentielles et est facile à manipuler et à couper. Bien que rentable, le NMFC convient mieux aux espaces intérieurs secs et peut nécessiter une protection supplémentaire dans les environnements exposés. Le conduit ondulé en PVC, appelé aussi tube électrique non métallique (ENT), est largement utilisé.

connecteur de conduit

2.2 Types de boîtiers électriques

 

Les boîtes électriques servent de point de jonction, abritant les connexions des fils et les protégeant des dommages extérieurs. Le type de boîtier choisi doit correspondre au type de conduit et à l'environnement d'installation. 

Boîtes de jonction: Ces grandes boîtes polyvalentes sont utilisées pour connecter plusieurs fils, ce qui les rend idéales pour les systèmes de câblage complexes. Les boîtes de dérivation sont souvent installées dans les murs, les plafonds ou les greniers et sont compatibles avec différents types de conduits flexibles.

Boîtes de sortie: Plus petites que les boîtes de jonction, les boîtes de sortie sont conçues pour abriter des prises de courant, des interrupteurs ou des luminaires. Elles sont couramment utilisées dans les bâtiments résidentiels et commerciaux et peuvent accueillir des connexions de conduits flexibles.

Boîtes étanches: Conçues pour les environnements extérieurs ou humides, ces boîtes sont scellées pour empêcher la pénétration de l'eau. Elles s'associent parfaitement aux conduits flexibles étanches pour une utilisation dans des domaines tels que l'éclairage extérieur, les systèmes de piscine ou les zones de lavage industriel.

2.2.3 Boîtes en métal ou en plastique

Boîtes métalliques: Durables, résistantes à la chaleur et conductrices, les boîtes métalliques sont souvent utilisées dans les environnements commerciaux et industriels. Elles constituent une voie de mise à la terre naturelle lorsqu'elles sont utilisées avec des conduits métalliques.

Boîtes en plastique: Légères et non conductrices, les boîtes en plastique constituent un choix rentable pour un usage résidentiel. Elles nécessitent une mise à la terre séparée si elles sont utilisées avec des conduits métalliques.

2.2.4 Dimensionnement de la boîte

Tenez toujours compte de la taille de la boîte, en veillant à ce qu'elle puisse accueillir confortablement le nombre de fils et de connecteurs. Le surpeuplement peut entraîner une surchauffe et des conditions dangereuses.

2.3 Connecteurs de conduits

 

Les connecteurs de conduits sont indispensables pour fixer un conduit flexible à une boîte électrique. Ils sécurisent le conduit, assurent l'alignement et maintiennent une enceinte sûre pour les câbles.

Connecteurs droits: Il s'agit du type le plus simple, conçu pour permettre au conduit d'entrer dans la boîte en ligne droite. Ils sont idéaux pour les installations qui ne nécessitent pas de changement de direction.

Connecteurs à 90 degrés: Utilisé pour effectuer des virages serrés sans solliciter le conduit ou les fils. Ils sont indispensables dans les espaces restreints ou les installations nécessitant un changement de direction à proximité de la boîte.

Connecteurs à décharge de traction: Ces connecteurs sont conçus pour fixer le conduit tout en minimisant la tension sur les fils inclus. Ils sont particulièrement utiles dans les zones soumises à des vibrations ou à des mouvements fréquents.

Connecteurs mâles et femelles: Ils sont utilisés pour relier différentes sections de conduits ou pour faire la transition entre un conduit et une boîte. Les connecteurs mâles se vissent généralement dans les connecteurs femelles pour un ajustement sûr.

Connecteurs étanches : Spécialisés pour être utilisés avec des conduits flexibles étanches, ces connecteurs sont dotés de joints en caoutchouc qui empêchent la pénétration de l'eau.

outil de raccordement des conduits et des boîtes

2.4 Matériel et outils

Une connexion fiable ne se limite pas aux conduits et aux connecteurs. Le matériel adéquat garantit la stabilité et la longévité :

Vis : Utilisées pour fixer les connecteurs à la boîte. Choisissez des vis résistantes à la corrosion, en acier inoxydable par exemple, pour les environnements extérieurs ou humides.

Écrous et rondelles : Fournissent une sécurité supplémentaire, en particulier dans les boîtes métalliques où un joint étanche est essentiel à la mise à la terre et à la stabilité.

Contre-écrous et bagues : Les contre-écrous maintiennent les connecteurs fermement en place, tandis que les bagues empêchent les fils de frotter contre les arêtes vives.

Des outils adéquats facilitent le processus d'installation et le rendent plus efficace. Veillez à ce que tous les outils soient de haute qualité et adaptés aux matériaux utilisés :

Pinces coupantes et dénudantes : Indispensables pour préparer les fils, ces outils assurent des coupes nettes et un retrait correct de l'isolant sans endommager l'âme du fil.

Tournevis : Un jeu de tournevis (à tête plate, cruciforme ou Torx) est nécessaire pour fixer les connecteurs et les composants de la boîte. Optez pour des poignées isolées pour plus de sécurité lorsque vous travaillez à proximité de fils sous tension.

Cintreuse de conduits : Bien que les conduits flexibles soient naturellement pliables, une cintreuse de conduits peut être nécessaire pour obtenir des angles précis, en particulier dans les applications de conduits métalliques.

Ruban à mesurer : Des mesures précises permettent d'obtenir des longueurs de conduits adéquates et de réduire le gaspillage de matériaux. Vérifiez toujours les mesures avant de couper.

Couteau utilitaire : Utilisé pour couper l'excédent de matériau des conduits non métalliques ou pour nettoyer les bords rugueux.

Perceuses et scies cloches : Pour les installations nécessitant de nouvelles ouvertures dans les boîtes ou les panneaux, ces outils permettent des coupes nettes et précises.

Niveau et marqueur : Un niveau permet de réaliser des installations droites et professionnelles, tandis qu'un marqueur aide à planifier les trajets des conduits et les points de montage.

3. Préparation du conduit et de la boîte électrique

Une bonne préparation est essentielle pour garantir une installation électrique sûre, durable et conforme.

3.1 Mesure du conduit

 

Mesure précise : Commencez par mesurer la longueur exacte du conduit nécessaire pour aller d'une boîte électrique à une autre, ou de la boîte à une prise, un interrupteur ou une jonction. Pour plus de précision, utilisez toujours un ruban à mesurer et veillez à mesurer le long de la trajectoire du conduit, y compris les coudes et les virages.

Considérer le chemin : Les conduits flexibles peuvent se plier et être acheminés autour des obstacles, mais les virages serrés peuvent endommager le conduit ou rendre son acheminement difficile. Veillez à prévoir des courbes graduelles. Si vous utilisez des conduits pour contourner des coins ou des murs, mesurez la distance totale, en ajoutant quelques centimètres supplémentaires pour les ajustements.

Comptabiliser les mouvements : Les conduits flexibles sont souvent utilisés dans des endroits où de légers mouvements peuvent se produire (comme les murs ou les plafonds) ; il faut donc prévoir un peu de jeu pour tenir compte de cette flexibilité.

Tenir compte des courbures : Si vous prévoyez de plier le conduit, vous devez tenir compte du rayon de courbure et ajouter une longueur supplémentaire. Les courbes serrées peuvent mettre à rude épreuve le conduit et les câbles à l'intérieur, ce qui risque de les endommager.

Rayon de courbure : Les conduits flexibles ont souvent un rayon de courbure minimum, c'est-à-dire la courbe la plus serrée qu'ils peuvent effectuer sans dommage. Si vous n'êtes pas sûr, une règle générale consiste à respecter un rayon de courbure au moins égal à trois fois le diamètre du conduit. Par exemple, pour un conduit de 1 pouce, le rayon de courbure minimum serait d'environ 3 pouces.

3.2 Techniques de coupe correctes

 

Pour obtenir une coupe nette, il faut utiliser l'outil de coupe adéquat. Pour les conduits flexibles comme l'ENT, les coupe-conduits (manuels ou électriques) sont idéaux car ils permettent de réaliser des coupes nettes et précises sans déformer le conduit. Il est également possible d'utiliser une scie à métaux, mais il faut veiller à ce que la lame soit fine pour éviter que les bords ne s'effilochent.

Fixer le conduit : Lors de la coupe, il est important de fixer le conduit afin d'éviter tout mouvement qui pourrait entraîner une coupe irrégulière. Utilisez une pince, un étau ou même un partenaire pour maintenir le conduit en place pendant la coupe. Cette étape garantit une coupe plus sûre et plus précise.

Coupe droite : Une coupe droite et régulière garantit que le conduit s'insère correctement dans la boîte électrique ou le connecteur, sans espace ni désalignement. Lors de la coupe, maintenez la scie ou le cutter de niveau et coupez toujours perpendiculairement à la longueur du conduit.

Utiliser un guide : Si vous utilisez une scie, une boîte à onglets ou un gabarit de coupe peut vous aider à guider votre scie, garantissant ainsi une coupe droite et d'équerre.

Conseil de pro : Après la coupe, utilisez une lime ou un outil d'ébavurage pour lisser les arêtes vives ou les bavures autour de l'extrémité coupée du conduit. Cette étape est cruciale pour éviter que le conduit n'endommage les fils ou ne soit mal ajusté lors de l'installation.

3.3 Préparation du boîtier électrique

 

Inspecter la boîte : Les boîtes électriques sont conçues avec des débouchures pré-perforées pour différentes tailles de conduits. Commencez par vérifier si la boîte comporte une entrée défonçable correspondant à la taille de votre conduit. Ces débouchures sont situées sur les côtés ou à l'arrière de la boîte et peuvent être facilement retirées pour créer une ouverture pour le conduit.

Choisir la bonne taille d'obturateur : Veillez à ce que la débouchure choisie corresponde au diamètre du conduit. Si la débouchure est trop grande ou trop petite, le conduit ne s'adaptera pas correctement, ce qui peut entraîner des problèmes de sécurité.

Débarrasser les débris : Avant d'effectuer toute connexion, inspectez et nettoyez soigneusement le boîtier électrique. Les boîtiers électriques peuvent accumuler de la poussière, de la saleté, de vieux fils isolés et d'autres débris susceptibles d'empêcher une connexion correcte. Utilisez un chiffon sec pour essuyer le boîtier et vérifiez qu'il n'y a pas de vieux fils ou de fragments de métal qui pourraient constituer un danger lors de l'installation.

Vérifier qu'il n'y a pas d'obstacles : Assurez-vous qu'il n'y a pas d'obstacles à l'intérieur de la boîte qui pourraient interférer avec le raccord du conduit ou l'empêcher de s'appuyer correctement contre la paroi de la boîte. Tout obstacle peut causer des problèmes lors de la fixation du conduit et entraîner une connexion dangereuse.

Contrôle final : Avant de procéder à l'installation du conduit et aux raccordements, prenez le temps de revérifier tous les préparatifs. Assurez-vous que les longueurs des conduits sont exactes, que les gaines sont correctement dénudées et que la boîte électrique est propre et prête à être raccordée. Une dernière vérification avant l'installation permet de s'assurer que tout se passe bien, réduisant ainsi le risque d'erreurs ou la nécessité de refaire le travail plus tard.

4. Guide étape par étape pour le raccordement du conduit flexible

 

Le raccordement d'un conduit flexible à une boîte électrique est un processus qui nécessite une attention particulière aux détails. Une connexion sûre garantit à la fois la sécurité et la fonctionnalité du système électrique, en protégeant les fils à l'intérieur et en évitant l'usure ou les déconnexions accidentelles. Vous trouverez ci-dessous un guide complet, étape par étape, sur la façon de raccorder un conduit flexible à une boîte électrique, afin de garantir une installation réussie et sûre.

Conduits flexibles en PVC Boîtes de connexion

Étape 1 : Positionnement du conduit et de la boîte

 

Commencez par positionner la boîte électrique et le conduit flexible à l'endroit où ils seront raccordés. Veillez à ce que la boîte et le conduit soient bien positionnés l'un par rapport à l'autre afin de minimiser les tensions sur les câbles et les connecteurs.

Aligner le conduit avec la boîte : Avant d'effectuer toute connexion physique, prenez le temps de vous assurer que le conduit s'aligne correctement sur la débouchure de la boîte électrique. Vous éviterez ainsi de plier ou de tordre inutilement le conduit et le câblage interne, ce qui risquerait de les mettre à rude épreuve.

Laisser de l'espace pour les coudes (si nécessaire) : Si le conduit flexible doit être plié pour effectuer une connexion, prévoyez l'espace nécessaire. Les conduits flexibles sont faciles à plier à la main, mais il est important de ne pas trop les plier, car cela pourrait endommager les fils à l'intérieur.

 

connexion-étanche-conduit-connecteur-et-boîte

Étape 2 : Fixer le connecteur de conduit

 

Le raccord de conduit est la pièce qui relie physiquement le conduit flexible à la boîte électrique. Choisissez un connecteur qui correspond à la taille du conduit et qui s'adapte à l'ouverture de la boîte électrique. Il existe différents types de connecteurs de conduit, tels que les connecteurs droits, les connecteurs à 90 degrés, les connecteurs de décharge de traction et les connecteurs mâle/femelle, en fonction des exigences de votre installation.

Insérer le conduit dans le connecteur : Glissez l'extrémité du conduit flexible dans le connecteur, en veillant à ne pas endommager le fil à l'intérieur. La plupart des connecteurs sont munis d'un œillet ou d'un joint de compression pour protéger le fil et éviter l'abrasion.

S'assurer d'une bonne adaptation : Le conduit doit être bien ajusté à l'intérieur du connecteur. Si le connecteur a une extrémité filetée (comme un connecteur à compression), assurez-vous que les filets s'engagent correctement pour une connexion sûre.

Soulagement de la tension (si nécessaire) : Pour les installations où le conduit peut être soumis à des contraintes physiques, ou lorsqu'il a besoin d'un support supplémentaire, utiliser un raccord de décharge de traction. Ce type de raccord empêche le conduit de sortir de la boîte sous l'effet de la tension.

conduit flexible métallique et boîte métallique

 

Étape 3 : Fixer le connecteur au boîtier électrique

 

Une fois le conduit inséré dans le connecteur, il est temps de fixer le connecteur au boîtier électrique. Cette étape est essentielle pour s'assurer que le conduit est fermement fixé et qu'il ne se détachera pas avec le temps, ce qui pourrait entraîner des risques pour la sécurité.

Serrer le connecteur : Utilisez un tournevis pour serrer les vis ou les boulons qui maintiennent le connecteur en place. Veillez à ce que le connecteur soit aligné sur la boîte, sans espace entre la boîte et le conduit. Cela garantira une connexion solide et stable.

Utiliser des contre-écrous (si nécessaire) : Certains connecteurs, en particulier ceux utilisés avec des conduits métalliques, peuvent nécessiter des contre-écrous pour les fixer. Les contre-écrous sont placés à l'intérieur de la boîte et serrés pour maintenir le connecteur en place. Veillez à bien serrer le contre-écrou, mais évitez de trop le faire, car vous risqueriez d'endommager la boîte ou le filetage du connecteur.

Assurer une bonne étanchéité : Si vous utilisez un connecteur étanche, vérifiez s'il est doté d'un joint en caoutchouc qui empêche l'humidité de pénétrer dans la boîte. Ce point est particulièrement important dans les environnements extérieurs ou humides.

conduit métallique flexible raccorder boîte métallique

Étape 4 : Serrer le conduit

 

Une fois le connecteur solidement fixé à la boîte, serrez le conduit flexible lui-même pour vous assurer qu'il est fermement installé dans le connecteur. Cette étape est essentielle pour garantir l'intégrité du conduit et protéger les fils contre l'exposition ou l'arrachement.t.

Pousser le conduit dans le connecteur : Pour certains types de connecteurs, vous devrez pousser le conduit flexible plus loin dans le connecteur jusqu'à ce qu'il soit complètement en place. Si le connecteur est doté d'un mécanisme de compression ou de verrouillage, serrez-le pour maintenir le conduit en place.

Vérifier les mouvements : Une fois le conduit serré, tirez doucement dessus pour vous assurer qu'il est fermement connecté. Il ne doit pas y avoir de mouvement entre le conduit et la boîte. Si c'est le cas, vérifiez à nouveau la connexion et assurez-vous que toutes les vis, tous les boulons et tous les mécanismes de verrouillage sont correctement serrés.

 

Étape 5 : Fixer les fils à l'intérieur du conduit

 

Maintenant que le conduit est solidement raccordé à la boîte, l'étape suivante consiste à s'assurer que les fils à l'intérieur du conduit sont correctement fixés. C'est important pour éviter que des fils ne se détachent ou ne créent un risque pour la sécurité.

Vérifier la longueur du fil : Veillez à ce que les fils à l'intérieur du conduit soient suffisamment longs pour atteindre les bornes ou les connecteurs prévus sans être trop tendus. Si nécessaire, coupez les fils excédentaires pour éviter qu'ils ne s'emmêlent ou qu'ils ne soient trop détendus.

Dénuder et connecter les fils : Si vous ne l'avez pas encore fait, dénudez les fils si nécessaire et connectez-les aux bornes appropriées à l'intérieur de la boîte électrique. Veillez à ce que les connexions soient bien serrées et sûres, sans fils dénudés.

Fixer les fils : Si la boîte électrique est équipée d'un collier de serrage ou d'une décharge de traction pour fixer les fils, utilisez-le pour maintenir les fils en place. Cela empêchera les fils de bouger dans le conduit et les protégera contre les dommages.

 

Étape 6 : Contrôles finaux

 

Une fois que tout est connecté, il est essentiel de procéder à une dernière vérification pour s'assurer que l'installation est à la fois sûre et conforme aux codes de l'électricité.

Vérifier la bonne étanchéité : Vérifiez que toutes les connexions, y compris le connecteur de conduit, le conduit et les vis du boîtier électrique, sont bien serrées. Des connexions mal serrées peuvent entraîner des courts-circuits électriques, une résistance accrue ou même des risques d'incendie.

Vérifier les connexions de mise à la terre : Assurez-vous que tout fil ou composant de mise à la terre est correctement connecté à la borne de mise à la terre dans le boîtier électrique.

Inspecter les fils exposés : Veillez à ce qu'aucun fil ne soit exposé au-delà de la boîte électrique ou du connecteur. Les fils exposés peuvent créer des risques d'électrocution, ils doivent donc être correctement fixés et isolés.

Étape 7 : Tester la connexion

 

Une fois le raccordement effectué et le tout serré, il est important de tester l'installation avant de tout finaliser.

Mettre le système sous tension : Si vous pouvez le faire en toute sécurité, mettez le système électrique sous tension pour vous assurer que la connexion fonctionne correctement. Vérifiez que le câblage ne présente pas de problèmes, tels que des courts-circuits, une chaleur excessive ou des disjoncteurs déclenchés.

Recherchez les problèmes : Inspectez la zone autour du conduit et de la boîte électrique pour détecter tout signe de surchauffe, d'étincelles ou de bruits inhabituels. Ces signes peuvent indiquer un problème de connexion qui doit être résolu avant de continuer.

5. Normes de conformité et de sécurité

 

Lors de l'installation de conduits électriques, le respect des normes et des codes de sécurité est essentiel pour la sécurité de l'installation et la protection de la propriété. Plusieurs normes et certifications ont été mises en place pour guider les professionnels dans la sélection et l'installation des bons matériaux et pour garantir que l'ensemble du système fonctionne efficacement et en toute sécurité. Ces normes sont notamment les suivantes Code national de l'électricité (NEC), certifications UL et CSAet le respect des codes de construction locaux.

 

2023-nfpa_nec exigences

5.1 Exigences du code NEC : Normes clés pour les installations de conduits

Le code national de l'électricité (NEC) est la principale norme pour l'installation sûre des câbles et des équipements électriques aux États-Unis. En ce qui concerne les installations de conduits, le NEC fournit des directives claires qui aident les professionnels à éviter les erreurs dangereuses et à garantir des systèmes sûrs et durables. Le NEC couvre des aspects tels que les types de conduits à utiliser, leur taille et les méthodes d'installation.

Dans ce qui suit, nous nous référons aux exigences relatives à l'installation des boîtes de jonction pour les lecteurs.

5.1.1 NEC 314.28 : Lignes directrices pour les matériaux des boîtes de jonction

La présente section définit les normes applicables aux matériaux utilisés pour la construction des boîtes de jonction.

Les boîtes de dérivation doivent être construites avec des matériaux compatibles avec l'environnement et les conditions dans lesquels elles sont installées. Cela inclut la résistance au feu, la durabilité et la protection contre les chocs mécaniques.

Les matériaux couramment utilisés pour les boîtes de jonction sont le métal (acier, aluminium) ou des matériaux non métalliques (PVC, fibre de verre), en fonction des conditions environnementales telles que l'exposition à l'humidité ou aux produits chimiques.

Les boîtes doivent également répondre à des normes spécifiques de résistance à la corrosion si elles sont utilisées dans des environnements tels que les zones côtières où l'eau salée peut causer de la corrosion.

Si la boîte de jonction doit être utilisée dans des emplacements dangereux (environnements explosifs ou inflammables), les matériaux doivent être conformes aux exigences spécifiques de l'emplacement dangereux (voir NEC 370-29).

Le matériau de la boîte doit pouvoir résister aux plages de température et aux contraintes prévues dans l'environnement.

5.1.2 NEC 314.16 : Volume de la boîte de jonction

Cette section fournit des conseils sur le volume (taille) approprié des boîtes de jonction afin de garantir un fonctionnement sûr et d'éviter la surchauffe.

Calculs de remplissage des boîtes: La taille de la boîte de jonction doit être suffisante pour accueillir tous les conducteurs, appareils et accessoires qu'elle abrite sans les encombrer.

Le calcul du remplissage implique la taille du conducteur, le nombre de conducteurs, les dispositifs (comme les interrupteurs ou les prises), les pinces et les conducteurs de mise à la terre.

Volume de la boîte: Le volume nécessaire dépend de plusieurs facteurs.

Pour les conducteurs : Chaque conducteur (sous tension, neutre ou de terre) contribue à un nombre spécifique de pouces cubes en fonction de son calibre.

Pour les appareils : Les interrupteurs, les prises de courant et autres dispositifs similaires nécessitent un certain espace dans la boîte.

Pinces et connecteurs : Ces composants s'ajoutent également au calcul du remplissage.

exigences en matière de conduits et de boîtes nec

 

Formule de remplissage de la boîte: Le NEC fournit un tableau (NEC Table 314.16(B)) qui attribue des valeurs en pouces cubes pour chaque élément. Le remplissage total ne doit pas dépasser le volume nominal de la boîte afin d'éviter toute surchauffe, tout défaut électrique ou toute difficulté à effectuer des connexions correctes.

5.1.3 NEC 370-29 : Boîtes de jonction pour emplacements dangereux

Cette section décrit les exigences applicables aux boîtes de jonction situées dans des emplacements dangereux, où il existe un risque d'explosion ou d'incendie dû à des gaz, des vapeurs ou des poussières inflammables.

Boîtes antidéflagrantes et antipoussières: Les boîtes de jonction utilisées dans les emplacements dangereux doivent être protégées contre les explosions (classe I, division 1 ou 2) ou contre l'inflammation des poussières (classe II, division 1 ou 2). Ces boîtes doivent empêcher l'inflammation par des étincelles, des arcs électriques ou de la chaleur.

Étanchéité et joints d'étanchéité: Les boîtes doivent être munies de joints et de garnitures qui empêchent la pénétration de matériaux inflammables, de poussières ou de liquides susceptibles de s'enflammer.

Conception de la couverture: Les couvercles doivent être étanches et capables de résister à des dégagements de haute pression sans laisser échapper de substances dangereuses.

Considérations matérielles: Les matériaux de la boîte doivent être conçus pour éviter la corrosion et la dégradation dans des environnements contenant des produits chimiques dangereux, des gaz ou des températures extrêmes.

5.1.4 NEC 314.29 : Boîtes de jonction pour les emplacements non dangereux

Cette section s'applique aux boîtes de jonction situées dans des endroits non dangereux où le risque d'explosion ou d'incendie est minime.

Sécurité générale : La boîte doit répondre aux normes générales de sécurité, offrir suffisamment d'espace pour permettre des connexions électriques sûres et éviter les surchauffes.

Protection contre les intempéries : Dans les zones exposées à l'humidité, à la poussière ou à la saleté (telles que les installations extérieures), le boîtier doit être étanche et adapté aux conditions environnementales. Par exemple, les boîtiers extérieurs doivent être conçus pour des emplacements humides ou mouillés (par exemple, NEMA 3R, 4 ou 4X).

Conformité au code : Les boîtes de jonction non dangereuses doivent toujours être conformes à toutes les autres sections applicables du NEC, y compris celles relatives à la mise à la terre (NEC 250.110), à l'espace de travail (NEC 110.26) et aux calculs de remplissage de la boîte (NEC 314.16).

5.1.5 NEC 250.110 : Directives pour la mise à la terre des boîtes de jonction

Cette section permet de s'assurer que les systèmes électriques sont correctement mis à la terre afin d'éviter les risques d'électrocution et d'incendie.

Connexions de mise à la terre : Les boîtes de dérivation doivent être correctement reliées à la terre. Cela comprend un cavalier de liaison ou un fil de terre qui relie la boîte au système de mise à la terre du bâtiment ou de la structure.

Boîtes métalliques : Pour les boîtes de jonction métalliques, la boîte elle-même est utilisée comme conducteur de terre. Une vis ou une borne de mise à la terre doit être prévue à l'intérieur de la boîte pour connecter le fil de terre.

Boîtes non métalliques : Les boîtes de jonction non métalliques nécessitent un fil de terre externe qui doit être connecté à une borne de mise à la terre ou à une vis de mise à la terre. Le matériau plastique de la boîte ne conduit pas l'électricité, de sorte qu'un conducteur de terre indépendant doit être acheminé jusqu'à la boîte.

Intégrité du système de mise à la terre : Le système de mise à la terre doit être maintenu tout au long de l'installation électrique afin de garantir un fonctionnement sûr du système électrique et d'éviter les chocs électriques.

5.1.6 NEC 110.26 : Lignes directrices pour le dégagement

Cette section définit l'espace de travail requis autour du matériel électrique, y compris les boîtes de jonction, afin de garantir la sécurité lors de l'installation, de l'entretien et des procédures d'urgence.

Dégagement avant : Un espace de travail minimum doit être prévu devant les panneaux électriques et les boîtes de jonction pour permettre une utilisation et une maintenance en toute sécurité. En règle générale, cet espace doit avoir une largeur d'au moins 30 pouces et s'étendre du sol au plafond, en fonction de la tension et de l'ampérage.

Profondeur du dégagement : La profondeur minimale de l'espace de travail dépend de la tension (par exemple, pour une tension de 600 volts ou moins, l'espace doit avoir une profondeur d'au moins 3 pieds). Les tensions plus élevées nécessitent des dégagements plus importants.

Hauteur libre : Pour un accès sûr à la boîte de jonction, le haut de la boîte ou du panneau électrique doit être installé à une hauteur suffisante, généralement à au moins 6,5 pieds au-dessus du sol.

Obstacles : L'espace de travail ne doit comporter aucun obstacle susceptible de gêner l'installation ou l'entretien de la boîte de jonction, et tous les points d'accès doivent rester dégagés.

5.2 Certifications UL et CSA : Importance des matériaux et des connecteurs certifiés

 

Les certifications UL (Underwriters Laboratories) et CSA (Canadian Standards Association) jouent un rôle crucial dans le maintien de la sécurité des installations de conduits électriques. Ces organismes sont chargés de tester et de certifier les produits et composants électriques, en veillant à ce qu'ils répondent à des normes de sécurité strictes.

Pour les matériaux tels que les conduits électriques, les connecteurs et les boîtes de jonction, la certification UL garantit que les produits ont été testés pour leur résistance au feu, leur durabilité et leur capacité à résister à des conditions extrêmes. Les conduits qui portent le label UL indiquent qu'ils ont satisfait aux normes de sécurité et de performance nécessaires pour une variété d'environnements. De même, la certification CSA confirme que les produits sont conformes aux normes de sécurité canadiennes, ce qui garantit qu'ils peuvent être utilisés en toute sécurité dans les systèmes électriques au Canada.

L'utilisation de matériaux et de connecteurs certifiés est cruciale car elle minimise le risque de défauts électriques ou d'incendies causés par des composants défectueux. Lorsque les produits portent ces certifications, les installateurs et les propriétaires de bâtiments peuvent être sûrs que les matériaux ont été soumis à des tests rigoureux et qu'ils conviennent à l'usage auquel ils sont destinés. En outre, les composants certifiés garantissent la conformité avec le NEC et d'autres normes de sécurité, ce qui facilite les inspections et le respect des exigences légales.

6. Conclusion

 

Le raccordement d'un conduit flexible à une boîte électrique peut sembler une tâche simple, mais elle joue un rôle crucial pour assurer la sécurité, l'efficacité et la durabilité d'un système électrique. Une installation correcte protège les fils électriques contre les dommages, réduit le risque de pannes électriques et garantit la conformité avec les normes et réglementations industrielles.

Ctube est un fournisseur de confiance de produits de haute qualité. conduits flexibles et des accessoires électriques conçus pour répondre aux diverses exigences des projets. Nos conduits flexibles sont fabriqués selon les normes les plus strictes et certifiés par UL, CSA et AS/NZS 2053, ce qui garantit des performances exceptionnelles, une grande durabilité et la conformité aux normes internationales de sécurité et de qualité.

En plus des conduits flexibles, nous proposons une gamme complète de boîtiers électriques et les accessoires connexes, tels que les peignes à godets, adaptés à diverses applications. Ces produits sont conçus pour fournir des solutions fiables pour les projets résidentiels, commerciaux et industriels, ce qui les rend idéaux pour les environnements exigeants.

Chez Ctube, nous sommes fiers d'offrir des solutions personnalisées pour répondre aux besoins spécifiques de nos clients. Que votre projet nécessite un type de conduit spécialisé ou un ensemble complet d'accessoires électriques, notre équipe est prête à vous aider. Nous combinons l'innovation, la qualité et un excellent service à la clientèle pour vous aider à atteindre les objectifs de votre projet de façon efficace et efficiente.

Merci de votre lecture et bonne chance dans vos projets.

FAQ

 

1. Les conduits flexibles peuvent-ils être utilisés à l'extérieur ?

Oui, les conduits flexibles peuvent être utilisés à l'extérieur, mais il est essentiel de choisir le bon type pour les applications extérieures. Lorsque vous utilisez un conduit flexible à l'extérieur, assurez-vous qu'il résiste aux UV et qu'il est compatible avec les conditions environnementales, telles que les températures extrêmes ou les fortes pluies. Vérifiez toujours les spécifications du fabricant et les codes de construction locaux pour l'utilisation à l'extérieur.

2. Comment puis-je savoir si j'utilise la bonne taille de connecteur pour mon conduit ?

Pour choisir la bonne taille de connecteur, il faut faire correspondre le connecteur au diamètre de votre conduit flexible. Les conduits sont généralement mesurés en fonction de leur diamètre nominal (par exemple, ½ pouce, ¾ pouce), qui doit correspondre au diamètre indiqué sur le connecteur. En outre, assurez-vous que le connecteur est compatible avec le type de conduit que vous utilisez (par exemple, étanche aux liquides ou métallique). Des connecteurs correctement dimensionnés garantissent une bonne fixation, empêchent les mouvements et préservent l'intégrité du système.

3. Que faire si mon conduit est trop court pour atteindre la boîte électrique ?

Si votre conduit flexible est trop court, vous avez deux options :

Utiliser un coupleur de conduit: Cet accessoire permet de raccorder solidement deux morceaux de conduit et d'en allonger la longueur. S'assurer que le coupleur correspond au type et à la taille du conduit.

Remplacer par un conduit plus long: Si possible, remplacez la partie la plus courte par une partie plus longue afin d'éliminer les points faibles potentiels.

Veillez à ce que toutes les connexions soient correctement scellées, en particulier dans les environnements où de l'humidité ou des débris pourraient pénétrer dans le système. En outre, évitez d'étirer ou de plier excessivement le conduit, car cela pourrait endommager le câblage ou compromettre l'installation.

 

Comment raccorder un conduit flexible à une boîte électrique : Un guide étape par étape En savoir plus "

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Un guide complet

Choisir le bon conduit électrique flexible pour une utilisation en extérieur : un guide complet

1. Comprendre les conduits électriques flexibles

 

1.1 Définition

 

Les conduits électriques flexibles sont des systèmes de tubes fabriqués à partir de divers matériaux conçus pour protéger et gérer le câblage électrique. Ils peuvent facilement s'adapter à différentes configurations et environnements, ce qui en fait un choix privilégié dans de nombreuses installations. L'objectif principal des conduits flexibles est de protéger les fils contre les dommages causés par les facteurs environnementaux, l'humidité et les contraintes mécaniques.

1.2 Différences avec les conduits rigides

 

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Conduit rigide et flexible

Les conduits flexibles diffèrent considérablement des conduits rigides en termes d'installation et d'application. Les conduits rigides, généralement en métal ou en PVC, sont droits et nécessitent des raccords pour les changements de direction. Ils offrent une excellente protection mais n'ont pas l'adaptabilité nécessaire pour un routage complexe. En revanche, les conduits flexibles peuvent être pliés et manipulés facilement, ce qui permet des transitions et des ajustements en douceur sans nécessiter de raccords supplémentaires. Cette flexibilité les rend idéaux pour les applications où le mouvement est nécessaire, comme le raccordement d'équipements extérieurs, de machines ou dans des zones où l'agencement change fréquemment.

 

1.3 Importance de choisir le bon conduit flexible pour l'extérieur

 

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Conduit flexible extérieur

Il est essentiel d’utiliser le bon conduit pour les applications extérieures. Les environnements extérieurs peuvent exposer les conduits aux intempéries, aux rayons UV et à l’usure physique. Le choix du conduit approprié améliore non seulement la sécurité, mais prolonge également la durée de vie du système de câblage, réduisant ainsi le risque de pannes et de dangers électriques. Dans ce blog, nous allons nous pencher sur la question « quel type de conduit électrique flexible est utilisé pour l’extérieur » et présenter différents types de conduits flexibles extérieurs, en explorant leurs caractéristiques, leurs applications et leurs avantages pour vous aider à faire des choix éclairés pour vos projets électriques.

 

1.4 Classification des conduits électriques flexibles

 

Il existe différentes classifications de conduits flexibles électriques en fonction de la base de la classification, comme la présence d'une gaine et les matériaux utilisés. Pour faciliter la compréhension, nous les avons classés de la même manière que celle indiquée sur le schéma, en les divisant en types gainés et non gainés. Dans l'article suivant, nous suivrons également cet ordre, en expliquant chaque catégorie en détail pour fournir une compréhension complète des différentes options de conduits flexibles disponibles.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Classification des conduits flexibles

Les conduits flexibles sont classés en deux catégories principales : gainés et non gainés. Les conduits flexibles gainés sont eux-mêmes divisés en fonction de leur composition matérielle. Un type possède un noyau métallique avec une gaine non métallique, communément appelé LFMC (conduit métallique flexible étanche aux liquides), offrant une flexibilité avec une protection renforcée contre les éléments environnementaux. Le deuxième type, LFNC (conduit non métallique flexible étanche aux liquides), est entièrement fabriqué à partir de matériaux non métalliques, offrant une résistance à la corrosion et une flexibilité, souvent utilisés dans des environnements humides ou difficiles.

 

D'autre part, les conduits flexibles non gainés sont classés en FMC (Flexible Metal Conduit) et FNC (Flexible Nonmetallic Conduit). Le FMC est généralement fabriqué en acier galvanisé ou en aluminium, offrant une protection durable dans des environnements plus exigeants. Le FNC est généralement fabriqué à partir de matériaux tels que le PVC et le PEHD.

 

2. Conduit électrique flexible avec gaine Introduction

 

2.1 Conduit métallique flexible étanche aux liquides

 

2.1.1 Que sont les conduits métalliques flexibles étanches aux liquides ?

Choisir le bon conduit électrique flexible pour une utilisation en extérieur LFMC

Selon l'article 350 du NEC, un conduit métallique flexible étanche aux liquides (LFMC) est un chemin de câbles de section circulaire doté d'une gaine extérieure étanche aux liquides, non métallique et résistante au soleil sur un noyau métallique flexible intérieur.

 

2.1.2 Qu'en est-il des exigences de production LFMC ?

 

Selon la certification UL, les conduits LFMC sont fabriqués à partir de matériaux tels que l'aluminium, le laiton, le cuivre ou l'acier inoxydable. Le matériau et les dimensions de la bande de liaison doivent être conçus de manière à ce que le conduit fini réponde aux valeurs de résistance requises avant les tests à courant élevé. De plus, la bande de liaison ne doit pas avoir d'impact négatif sur la flexibilité du conduit ou sur son rayon de courbure minimal.

 

Une tresse métallique, d'un diamètre de fil minimum de 0,005 pouce (0,13 mm), peut éventuellement être insérée entre le conduit métallique et la gaine extérieure. Si le noyau du conduit est en aluminium, la tresse doit également être en aluminium ou en métal étamé pour assurer la compatibilité.

 

2.1.3 Dimensions des conduits métalliques flexibles étanches aux liquides

 

Le conduit métallique fini doit respecter les dimensions de diamètre interne et externe spécifiées, comme indiqué dans le tableau 5.1. Ces mesures garantissent que le conduit n'est ni trop grand ni trop petit.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Tailles LFMC

2.2 Conduit flexible non métallique étanche aux liquides

 

2.2.1 Que sont les conduits flexibles non métalliques étanches aux liquides ?

 

Le conduit flexible non métallique étanche aux liquides (LFNC) est un chemin de câbles de section circulaire de différents types qui peut être plié par

La lame est conçue pour être utilisée à la main sans autre aide et est conçue pour fléchir tout au long de sa vie. FNMC est une désignation alternative pour LFNC. Selon la liste UL, LFNC est conçu pour être utilisé dans des endroits humides, secs ou huileux à un maximum de 60 °C (140 °F), sauf indication contraire.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur LFNC

2.2.2 Types de conduits flexibles non métalliques étanches aux liquides

 

Type LFNC-A : Un noyau intérieur lisse et sans soudure et un revêtement collés ensemble et comportant une ou plusieurs couches de renfort entre le noyau et les revêtements.

Type LFNC-B : Une surface intérieure lisse avec renfort intégré dans la paroi du chemin de roulement.

Type LFNC-C : Surface interne et externe ondulée sans renfort intégré dans la paroi du chemin de roulement.

 

2.2.3 Dimensions des conduits flexibles non métalliques étanches aux liquides

 

Les conduits de type LFNC-A ont des exigences spécifiques concernant leurs diamètres intérieur et extérieur, qui doivent être conformes aux normes définies dans le tableau 1. Pour garantir la conformité, des jauges de limite de passage/d'interdiction, telles que spécifiées dans la figure 1 et le tableau 1, sont utilisées pour les tests. La gaine séparée du conduit doit également satisfaire aux exigences d'épaisseur minimale décrites dans le tableau 2. Cette épaisseur est déterminée en découpant et en préparant un échantillon du conduit fini. L'épaisseur moyenne est calculée à partir de cinq mesures, tandis que la plus petite mesure représente l'épaisseur minimale à tout point.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Tailles LFNC

Pour les conduits de type LFNC-B, les diamètres intérieur et extérieur doivent respecter les dimensions définies dans le tableau 3 et la conformité est vérifiée à l'aide de la même méthode de jauge de passage/d'interdiction que pour les conduits de type LFNC-A. La gaine ou le revêtement flexible des conduits de type LFNC-B est renforcé, mais son épaisseur n'est spécifiée qu'aux points situés entre les circonvolutions formées par le renfort rigide. Au moins trois mesures sont prises autour de la circonférence, la plus petite représentant l'épaisseur minimale en tout point, comme indiqué dans le tableau 4.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Tailles LFNCB

Pour les conduits de type LFNC-C, le diamètre intérieur minimum doit être conforme aux spécifications du tableau 5. D'autres dimensions, telles que l'épaisseur de la gaine, ne sont pas spécifiées pour ce type.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Tailles LFNCC

3. Introduction aux conduits électriques flexibles sans gaine

 

3.1 Conduit métallique flexible (FMC)

 

3.1.1 Que sont les conduits métalliques flexibles ?

 

Un conduit métallique flexible (FMC) est un chemin de câbles de section circulaire constitué de bandes métalliques enroulées en hélice, formées et imbriquées.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur FMC

Pour les conduits flexibles en acier, le matériau de la bande doit être en acier au carbone avec une résistance à la traction minimale de 34 000 lbf/po² (234,5 MPa). La bande doit conserver une largeur et une épaisseur uniformes sur toute la longueur, garantissant ainsi une fabrication uniforme. De plus, toutes les surfaces doivent être exemptes de tartre et de rouille avant l'application d'un revêtement protecteur en zinc.

 

Dans le cas des conduits flexibles en aluminium, le matériau de la bande doit répondre à des exigences de résistance à la traction similaires, avec une résistance à la traction minimale de 34 000 lbf/po² (234,5 MPa). Cependant, pour l'aluminium, il existe une exigence supplémentaire selon laquelle la teneur en cuivre ne doit pas dépasser 0,40 %. Comme la bande d'acier, la bande d'aluminium doit également conserver une largeur et une épaisseur constantes sur toute sa longueur.

 

3.1.2 Épaisseur du conduit métallique flexible

 

L'épaisseur de la bande métallique utilisée pour les conduits métalliques flexibles ne doit pas être inférieure à celle indiquée dans le tableau 5.1 pour les conduits métalliques flexibles à paroi standard (FMC).

 

Exception : L'épaisseur de la bande métallique peut être inférieure à celle indiquée dans le tableau 5.1 lorsque le conduit est conforme aux exigences spécifiées pour les conduits métalliques flexibles à paroi réduite (RWFMC).

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Tailles FMC

3.1.3 Exigences relatives au diamètre extérieur des conduits flexibles en acier et en aluminium

 

Pour les conduits flexibles finis en acier et en aluminium, les tailles commerciales de 3/8 à 4 doivent respecter des exigences spécifiques en matière de diamètre extérieur. Le diamètre extérieur de ces conduits ne doit pas être inférieur aux valeurs indiquées dans la deuxième colonne, ni supérieur à celles de la troisième colonne du tableau 9.1 (en pouces) ou du tableau 9.2 (en millimètres). Cela garantit la cohérence de la taille des conduits et la compatibilité avec les raccords et autres composants des installations électriques.

 

3.1.4 Exigences relatives au diamètre intérieur des conduits flexibles en acier et en aluminium

 

De même, le diamètre intérieur des conduits de calibres commerciaux 3/8 à 4 doit respecter les normes minimales indiquées dans la quatrième colonne du tableau 9.1 ou du tableau 9.2. Pour les conduits de calibres commerciaux compris entre 3/8 et 2, le diamètre intérieur ne doit pas dépasser les valeurs maximales indiquées dans la cinquième colonne de ces tableaux. Ces spécifications garantissent un espace de câblage adéquat et minimisent le risque de surcompression ou de capacité réduite.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Taille FMC

 

3.2 Tubes électriques non métalliques (ENT)

 

3.2.1 Que sont les tubes électriques non métalliques ?

 

Les tubes électriques non métalliques (ENT) sont des canalisations ondulées, flexibles et non métalliques de section circulaire. Les ENT sont composés d'un matériau résistant à l'humidité et aux atmosphères chimiques et ignifuge.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur ENT

3.2.2 Exigences relatives aux tubes électriques non métalliques

 

Le matériau utilisé pour les raccords ENT doit être du polychlorure de vinyle (PVC) rigide (non plastifié). Les raccords fixés mécaniquement doivent être fabriqués à partir d'un matériau ayant un indice thermique relatif (RTI) minimum de 90 °C (194 °F) pour les propriétés électriques et pour les propriétés mécaniques sans impact, comme décrit dans les normes UL 746B et CAN/CSA-C22.2 No. 0.17.

 

Conformément à la norme UL 1653, les ENT couverts par cette norme sont conçus pour être utilisés dans des conditions de température et d'installation spécifiques. Ils peuvent fonctionner en continu à une température maximale de 75 °C (167 °F) et dans des environnements où la température ambiante ne dépasse pas 50 °C (122 °F).

 

Dans les installations en grenier, les tubes électriques non métalliques (ENT) ne doivent pas être placés à plus de 900 mm (3 pieds) au-dessus du bas de la solive de plafond, et le matériau ENT doit être conçu pour un minimum de 60 °C (140 °F) pour garantir des performances sûres dans ces conditions.

 

3.2.3 Dimensions des tubes électriques non métalliques

 

Les dimensions des différentes tailles commerciales d'ENT doivent être telles qu'indiquées dans le tableau 1.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Tailles ENT

Nous avons présenté ce type de conduit en détail dans cet article. Vous pouvez en apprendre davantage si vous le souhaitez.

 

3.3 Conduit en polyéthylène haute densité (PEHD)

 

3.3.1 Que sont les conduits en polyéthylène haute densité ?

 

Le conduit en polyéthylène haute densité (PEHD) est un chemin de câbles non métallique de section circulaire.

Les normes Schedule 40, Schedule 80, EPEC-A et EPEC-B sont des types de conduits électriques en polyéthylène haute densité (PEHD) à parois lisses et enroulables, chacun étant couvert séparément par la norme relative aux conduits en PEHD à longueur continue, UL 651B.

Les conduits en PEHD de la série 40 sont spécialement conçus pour les applications hors sol lorsqu'ils sont encastrés dans au moins 50 mm (2 po) de béton. Ils conviennent également aux installations souterraines, soit par enfouissement direct, soit par enrobage dans du béton, offrant flexibilité et durabilité pour une variété de projets électriques.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Conduit en PEHD

3.3.2 Types et tailles de conduits en polyéthylène haute densité

 

Les limites du diamètre extérieur des conduits Schedule-40, Schedule-80, EPEC-A et EPEC-B doivent être telles que spécifiées dans le tableau 5.1.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Dimensions des conduits en PEHD

Les limites d'épaisseur des parois des conduits Schedule-40, Schedule-80, EPEC-A et EPEC-B doivent être telles que spécifiées dans les tableaux 5.2 et 5.3.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Taille du conduit en PEHD

3.3.3 Exigences relatives aux conduits en PEHD

 

La résistance à la traction moyenne de trois échantillons vieillis de conduit fini doit être au moins égale à 95 % de la résistance à la traction moyenne de trois échantillons non vieillis. De plus, la résistance à la traction moyenne des échantillons non vieillis doit respecter la limite spécifiée pour le composé utilisé dans la fabrication du conduit. Cependant, les échantillons non vieillis doivent avoir une résistance à la traction d'au moins 4 000 lbf/po² (27,6 MN/m², 2,76 kN/cm² ou 2 812 gf/mm²), ce qui garantit que le conduit conserve une résistance mécanique adéquate.

 

La température moyenne à laquelle les échantillons de barres simplement appuyés et chargés au centre, usinés à partir d'un conduit fini, fléchissent de 0,010 pouce (0,25 mm) ne doit pas être inférieure à 70 °C (158 °F) sous une contrainte de 66 psi (455 kN/m², 45,5 N/cm² ou 46,4 gf/mm²). Cela garantit que le conduit conserve une résistance suffisante à la déformation dans des conditions de contrainte et de température spécifiées

 

4. Choisissez le bon conduit flexible pour une utilisation en extérieur

 

Lors de la sélection de conduits flexibles pour des applications extérieures, il est essentiel de prendre en compte divers défis environnementaux.

4.1 Exigences clés pour les conduits flexibles extérieurs

 

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Installation de conduits

  • Résistance à l'eau et à l'humidité:Le conduit doit empêcher l'infiltration d'eau pour protéger le câblage électrique contre les dommages et les courts-circuits, en particulier dans les environnements pluvieux ou humides.
  • Résistance à la corrosion:Les installations extérieures sont souvent exposées à des éléments pouvant provoquer de la corrosion, notamment dans les zones côtières ou les zones industrielles. Le matériau doit être résistant à la corrosion pour garantir des performances durables.
  • Résistance aux UV:L'exposition au soleil peut dégrader les matériaux au fil du temps. Un conduit résistant aux UV est essentiel pour éviter la fragilité ou la fissuration due à une exposition prolongée au soleil.
  • Tolérance de température:Les conduits extérieurs doivent pouvoir résister à des fluctuations de température extrêmes, à la fois élevées et basses, pour éviter la dilatation, la contraction ou la dégradation du matériau.
  • Résistance à la pression et aux chocs:Dans les zones où le conduit peut être soumis à des contraintes physiques, par exemple lorsqu'il est enterré ou monté dans des endroits exposés, il doit pouvoir résister à la pression et aux impacts potentiels sans dommage.

Nous comparons ci-dessous différents conduits flexibles en fonction de ces normes de test essentielles pour vous aider à faire le bon choix pour la sélection de conduits électriques.

 

4.2 Comparaison de différents types de conduits flexibles

Comparaison des choix de conduits électriques flexibles adaptés à une utilisation en extérieur

4.2.1 Conduit métallique flexible étanche aux liquides (LFMC)

 

Comme nous l'avons mentionné ci-dessus, le conduit métallique flexible étanche aux liquides (LFMC) se compose d'un noyau métallique flexible, généralement en acier galvanisé, qui est enveloppé dans une gaine en plastique étanche. Cette conception combine la résistance du métal avec la résistance à l'humidité des matériaux non métalliques.

Caractéristiques

  • Noyau métallique: Fournit une protection mécanique robuste pour les câbles à l'intérieur.
  • Gaine en plastique:Offre une excellente imperméabilité et résistance aux UV, ce qui le rend idéal pour une utilisation en extérieur.

Principaux avantages

  • Imperméabilité supérieure:Le revêtement extérieur en plastique assure une protection complète contre l'eau, ce qui rend le LFMC parfait pour les environnements humides tels que les jardins, les bords de piscine ou les climats pluvieux.
  • Résistant à la corrosion:Le noyau en acier galvanisé résiste à la rouille, tandis que le revêtement en plastique ajoute une couche supplémentaire de défense contre la corrosion.
  • Haute durabilité:LFMC offre une protection exceptionnelle contre les contraintes mécaniques et les impacts, ce qui le rend idéal pour les applications lourdes telles que le câblage des équipements extérieurs, des machines et des installations exposées.

Idéal pour

Applications nécessitant une protection mécanique renforcée, telles que le câblage à proximité de sources d'eau, d'équipements extérieurs ou de zones exposées à des impacts potentiels.

 

4.2.2 Conduit flexible non métallique étanche aux liquides (LFNC)

 

Les conduits flexibles non métalliques étanches aux liquides (LFNC) sont entièrement fabriqués à partir de matériaux non métalliques, souvent du chlorure de polyvinyle (PVC), ce qui les rend légers et très flexibles. Contrairement aux conduits flexibles non métalliques étanches aux liquides (LFMC), ils n'ont pas de noyau métallique mais offrent néanmoins une excellente protection dans les environnements extérieurs.

Caractéristiques

  • Composition non métallique: Fabriqué à partir de matériaux tels que le PVC, le LFNC est résistant à la corrosion et très flexible.
  • Résistance à l'humidité et aux UV:Le plastique est conçu pour être imperméable et résistant à la dégradation par la lumière du soleil.

Principaux avantages

  • Installation facile:En raison de sa nature légère, le LFNC est plus facile à manipuler et à installer que les conduits métalliques.
  • Rentable:Les conduits non métalliques sont généralement moins chers que les conduits métalliques, offrant une solution économique sans compromettre la résistance à l'humidité.
  • Résistance à la corrosion:Comme il n’est pas métallique, le LFNC est naturellement insensible à la rouille et à la corrosion, ce qui en fait un excellent choix pour les environnements côtiers ou très humides.

Idéal pour

Applications où la flexibilité et la protection contre l'humidité sont nécessaires mais la protection mécanique n'est pas aussi critique, comme l'éclairage extérieur ou les systèmes de câblage résidentiels.

 

4.2.3 Conduit métallique flexible (FMC)

 

Le conduit métallique flexible (FMC), parfois appelé « Greenfield », est constitué de bandes métalliques enroulées en spirale et imbriquées (généralement en acier galvanisé ou en aluminium).

Caractéristiques

  • Méta imbriquéel : La conception du FMC lui confère résistance et flexibilité, lui permettant de contourner les obstacles tout en offrant une protection mécanique.

Principaux avantages

  • Forte protection mécanique:Le FMC est conçu pour résister aux impacts et à la pression externe, ce qui le rend idéal pour les zones extérieures où le conduit pourrait être soumis à des contraintes physiques.
  • Résistance à la chaleur:Les conduits métalliques comme FMC fonctionnent mieux dans les environnements à températures élevées par rapport aux options non métalliques, ce qui les rend idéaux pour les installations à proximité de sources de chaleur.

Idéal pour

Installations extérieures où la protection mécanique est une priorité, mais dans des zones qui ne sont pas exposées à l'eau ou à l'humidité.

 

4.2.4 Conduits flexibles non métalliques

 

Les conduits flexibles non métalliques sont fabriqués à partir de plastiques tels que le PVC ou le polyéthylène et sont utilisés dans une variété d'applications extérieures et souterraines où la résistance à la corrosion et la flexibilité sont importantes.

Caractéristiques

  • Non métallique:Ce conduit est résistant à la corrosion et très flexible, ce qui le rend facile à installer autour des virages et des obstacles.
  • Imperméable:De nombreux conduits non métalliques sont conçus pour les environnements humides, ce qui les rend adaptés aux installations extérieures où une protection contre l'eau est requise.

Principaux avantages

  • Résistant à la corrosion:Étant non métallique, ce conduit est naturellement insensible à la rouille, ce qui le rend idéal pour les installations humides, souterraines ou côtières.
  • Protection UV:La plupart des conduits non métalliques utilisés à l’extérieur sont dotés de propriétés de résistance aux UV, empêchant la dégradation due à l’exposition au soleil.

Idéal pour

Domaines où la résistance à la corrosion et la flexibilité sont essentielles, comme l'aménagement paysager extérieur ou les systèmes d'éclairage de jardin.

 

4.2.5 Conduit en polyéthylène haute densité (PEHD)

 

Caractéristiques

  • Matériau en polyéthylène : le PEHD résiste aux produits chimiques, à l'eau et aux chocs, offrant une protection durable dans les environnements difficiles.
  • Flexibilité extrême : La flexibilité du matériau facilite son installation, même sur des terrains courbes ou irréguliers.

Principaux avantages

  • Imperméable:Les conduits en PEHD offrent une étanchéité exceptionnelle et sont idéaux pour les applications d'enfouissement direct, telles que les lignes électriques ou de télécommunications souterraines.
  • Haute résistance aux chocs:Excellente ténacité pour résister aux conditions de chantier, se plie et fléchit sans se casser, même en cas de soulèvement ou de déplacement du sol.
  • Résistance à la température:Résiste à la fragilité due au vieillissement ou au froid et conserve sa résistance aux chocs

Idéal pour

Installations extérieures à long terme dans des environnements difficiles, telles que le câblage souterrain pour les systèmes de distribution électrique, les télécommunications et les applications d'énergie solaire.

 

5. Codes, normes et certifications des conduits électriques flexibles

 

Pour améliorer votre compréhension, nous vous fournissons quelques références aux normes pertinentes en matière de cathéters flexibles. Différentes normes peuvent répondre à diverses utilisations et applications finales. Il est donc important d'examiner le champ d'application de chaque norme pour comprendre son objectif.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Normes relatives aux conduits

5.1 Normes relatives aux conduits métalliques flexibles étanches aux liquides

● Laboratoires Underwriters (UL et ULC) (par exemple UL360)

●Article 350 de la norme NFPA70/NEC

●Association canadienne de normalisation (CSA) (par exemple, C22.2 No. 56).

 

5.2 Normes relatives aux conduits flexibles non métalliques étanches aux liquides

●Underwriters Laboratories (UL et ULC) (par exemple UL1660)

●Article 356 de la norme NFPA70/NEC

●Association canadienne de normalisation (CSA) (par exemple, C22.2 no 198).

 

5.3 Normes relatives aux conduits métalliques flexibles

● Laboratoires Underwriters (UL et ULC) (par exemple UL1)

●Article 348 de la norme NFPA70/NEC

●Association canadienne de normalisation (CSA) (par exemple, C22.2 No. 50).

 

5.4 Normes relatives aux conduits flexibles non métalliques

 

5.4.1 Normes relatives aux conduits flexibles ondulés en polychlorure de vinyle (PVC) et aux tubes électriques non métalliques (ENT)
 

●Underwriters Laboratories (UL et ULC) (par exemple UL1653)

●Article 262 de la norme NFPA70/NEC

●Association canadienne de normalisation (CSA) (par exemple, C22.2 No. 227).

 

5.4.2 Normes relatives aux conduits en polyéthylène haute densité (PEHD)
 

●ASTM International (par exemple, ASTM F2160, D3485) ;

●Underwriters Laboratories (UL et ULC) (par exemple UL651A, UL 1990)

●Article 353 de la norme NFPA70/NEC

●NEMA (par exemple, TC7, TCB-4, TCB-3)

●Association canadienne de normalisation (CSA) (par exemple, CSA C22.2 NO327)

 

6. Conclusion

 

Cet article fournit un aperçu détaillé des différents types de conduits électriques flexibles, soulignant les avantages et les caractéristiques uniques de chaque matériau. Les conduits flexibles en PVC, connus pour leur nature légère et économique, sont idéaux pour le câblage extérieur résidentiel et les zones à contraintes mécaniques limitées. Les conduits flexibles en métal offrent une résistance et une durabilité supérieures, ce qui les rend adaptés aux environnements industriels ou aux emplacements où le câblage peut être exposé à des dommages physiques. Les conduits flexibles étanches aux liquides sont spécifiquement conçus pour empêcher l'intrusion d'humidité, ce qui les rend parfaits pour les zones humides ou mouillées, telles que les équipements extérieurs, les installations de piscine ou les zones sujettes aux précipitations.

 

Lors de la sélection d'un conduit, il est important d'évaluer les conditions environnementales spécifiques auxquelles votre projet sera confronté. Cela comprend l'exposition aux rayons UV, les fluctuations de température, l'humidité et les impacts physiques. Les besoins de protection mécanique du câblage doivent également être pris en compte, en particulier dans les zones à fort trafic ou industrielles où les câbles peuvent être en danger. De plus, le choix du conduit doit s'aligner sur le budget du projet, en équilibrant la rentabilité avec le niveau de protection nécessaire.

 

Un autre facteur critique est la réglementation locale et les normes de sécurité, telles que celles décrites dans le National Electrical Code (NEC) et d'autres directives régionales. Le respect de ces normes est essentiel pour garantir la sécurité et la longévité de votre installation. En fin de compte, le choix du bon conduit flexible implique une évaluation minutieuse des besoins spécifiques du projet, des scénarios d'application et des exigences locales pour obtenir des performances, une durabilité et une conformité réglementaire optimales.

 

 

7. Conduits flexibles en PVC et UPVC de Ctube

 

Ctube est un fabricant de conduits professionnel, dédié à la fourniture de produits fiables et durables pour des installations électriques polyvalentes.

 

Notre Conduits flexibles en PVC sont conformes aux certifications internationales telles que UL 651, AS/NZS 2053 et CSA, garantissant une flexibilité, une durabilité et une sécurité exceptionnelles dans différents environnements.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur Ctube ENT

Ctube propose également des séries de conduits flexibles spéciaux : la série de conduits solaires et la série de conduits sans halogène à faible émission de fumée (LSZH). Le conduit solaire est spécialement conçu pour les applications photovoltaïques, offrant une résistance supérieure aux rayons UV et aux conditions météorologiques difficiles. Plage de température de -15 à +105℃ et il est ignifuge. Ce conduit garantit une durabilité et des performances à long terme, ce qui en fait un choix idéal pour les installations solaires.

 

Que vous ayez besoin d'une protection pour le câblage dans des environnements dynamiques, des applications extérieures ou des espaces confinés, vous pouvez faire confiance à Ctube pour protéger vos systèmes électriques avec les normes de performance et de fiabilité les plus élevées.

 

FAQ

 

1. Comment savoir quel matériau de conduit flexible convient le mieux à mon projet ?

 

Pour choisir le bon conduit, tenez compte de facteurs tels que les conditions environnementales (par exemple, l'humidité, l'exposition aux UV), les besoins de protection mécanique, les exigences de sécurité, le budget du projet et les réglementations locales. Par exemple, les conduits en PVC sont économiques et résistants à la corrosion, tandis que les conduits métalliques offrent une durabilité et une protection contre les chocs supérieures.

 

2. Quelle est la durée de vie des conduits flexibles dans les installations extérieures ?

 

La longévité des conduits flexibles dans les installations extérieures dépend du matériau et des conditions environnementales. Les conduits en PVC sont très résistants à la corrosion et aux dommages causés par les UV, tandis que les conduits métalliques offrent une durabilité durable contre les contraintes physiques. Un entretien et une inspection réguliers peuvent prolonger davantage la durée de vie des conduits.

 

3. Comment les conduits flexibles se comparent-ils aux conduits rigides pour une utilisation en extérieur ?

 

Les conduits flexibles sont plus faciles à installer dans des configurations complexes et dans des zones avec des espaces restreints ou des mouvements. Ils sont idéaux pour les applications où l'adaptabilité est requise. Cependant, les conduits rigides offrent une meilleure protection mécanique et sont généralement utilisés dans les zones où le conduit n'a pas besoin de se plier ou de se tordre. Les deux types ont leurs avantages en fonction de l'application et de l'environnement.

Choisir le bon conduit électrique flexible pour une utilisation en extérieur : un guide complet En savoir plus "

Top 10 des fournisseurs de conduits électriques à Singapour

Top 10 des fournisseurs de conduits électriques à Singapour

Cantax

1. Cantex

 

Valeurs et vision de l'entreprise

Cantex Inc. est une marque reconnue dans le secteur des conduits électriques, pour son engagement indéfectible envers la qualité et la satisfaction de la clientèle. Les valeurs fondamentales de l'entreprise s'articulent autour de l'intégrité, de l'innovation et de la durabilité. Cantex accorde la priorité au maintien de normes élevées de performance et de fiabilité de ses produits tout en favorisant une culture d'amélioration continue. Sa vision est de mener l'industrie grâce à l'excellence de la fabrication et à une compréhension approfondie des besoins des clients, en veillant à ce que chaque produit non seulement réponde aux attentes, mais les dépasse.

 

Gamme de produits : Conduits et raccords électriques

Cantex propose une vaste sélection de conduits électriques et de solutions de raccords conçues pour répondre à divers besoins d'application :

  • Conduit en PVC : Le conduit en PVC de Cantex est réputé pour sa durabilité, sa résistance à la corrosion et sa polyvalence. Il est disponible en versions standard et robuste, ce qui le rend adapté à une large gamme d'installations résidentielles et commerciales.
  • Raccords et accessoires : L'entreprise propose une gamme variée de raccords, notamment des raccords, des coudes et des connecteurs. Ces composants sont conçus pour des connexions sûres et fiables, garantissant une installation robuste et durable.
  • Produits spécialisés : En plus des produits standards, Cantex propose des produits spécialisés tels que des conduits flexibles et des systèmes de conduits spécialisés. Ceux-ci sont conçus pour répondre à des exigences spécifiques, notamment les applications à haute température et les environnements soumis à de fortes contraintes mécaniques.

 

IPEX

2. Ipex

 

Valeurs et vision de l'entreprise

Avec plus de 80 ans d'expérience dans le secteur, Iplex s'est imposé comme un fournisseur de premier plan de solutions de conduits, en mettant l'accent sur la fourniture de produits et de services de haute qualité. Les valeurs fondamentales de l'entreprise, à savoir la sécurité, l'innovation et la collaboration avec les clients, motivent son engagement à relever les défis du secteur et à proposer des solutions efficaces. La vision d'Iplex est de diriger le marché avec des produits durables et innovants, en veillant à ce que ses solutions répondent aux besoins actuels et anticipent les demandes futures.

 

Gamme de produits : Conduits électriques et de télécommunications

Iplex propose une gamme complète de conduits conçus pour diverses applications dans les secteurs de l'électricité et des télécommunications :

  • Conduits en PVC-U : Les conduits en PVC-U d'Iplex sont conçus pour protéger les câbles dans les installations enterrées et hors sol. Le PVC-U est largement utilisé en raison de ses propriétés de légèreté, de sa facilité d'assemblage et de sa non-conductivité. Ces conduits conviennent à la protection des câbles à fibre optique et de télécommunication.
  • Options de livraison complètes : Pour optimiser la gestion de projet, Iplex fournit des conduits, des puits électriques et des accessoires sous forme d'ensemble complet. Cette approche permet aux gestionnaires de projet et aux entrepreneurs de gagner du temps et de l'argent en simplifiant les processus d'approvisionnement et d'installation.
  • Conduits en polyéthylène (PE100) : Pour les applications impliquant des installations sans tranchée ou enfouies directement, Iplex fournit des conduits en polyéthylène disponibles en bobines ou en grands tambours. Les conduits PE100 sont reconnus pour leur durabilité et leur flexibilité, ce qui les rend adaptés aux environnements souterrains exigeants.

 

Atkoré

3. Atkore

 

Valeurs et expertise de l'entreprise

Atkore est un leader mondial des solutions électriques, réputé pour sa vaste expérience et son innovation dans le secteur. Forte d'un siècle d'expertise, Atkore se consacre à la fourniture de produits de haute qualité qui alimentent et protègent les infrastructures critiques. L'entreprise s'engage à fournir des solutions complètes qui garantissent un flux d'électricité sûr, efficace et efficient dans diverses applications. L'engagement d'Atkore envers la satisfaction de ses clients et son excellence opérationnelle renforce sa réputation de fournisseur de confiance et privilégié dans le monde entier.

 

Gamme complète de produits

Atkore propose une large gamme de produits électriques conçus pour répondre à des besoins divers dans différents secteurs :

  • Solutions de conduits : Atkore propose une large sélection de conduits, notamment en acier, en PVC et en aluminium, ainsi que des options avec revêtement en PVC. Ces conduits sont conçus pour protéger le câblage électrique dans différents environnements, garantissant durabilité et fiabilité.
  • Câbles armés et flexibles : les câbles armés de la société offrent une protection améliorée pour les conditions difficiles, tandis que les conduits flexibles sont idéaux pour les installations dynamiques nécessitant une adaptabilité.
  • Systèmes de support : Des composants essentiels tels que des systèmes de supports, des paniers métalliques et des chemins de câbles sont disponibles pour soutenir et organiser l'infrastructure électrique, contribuant ainsi à l'exécution efficace du projet.

 

Electri-Flex

4. Electri-Flex

 

Valeurs et héritage de l'entreprise

Depuis 65 ans, Electri-Flex est un pionnier dans le secteur de l'électricité, réputé pour son innovation, sa qualité et ses solutions à valeur ajoutée en matière de protection des conduits, fils et câbles flexibles. L'engagement de l'entreprise envers l'excellence se reflète dans sa main-d'œuvre dévouée et ses représentants de fabricants leaders du secteur. Le solide héritage d'Electri-Flex repose sur un savoir-faire supérieur et une approche tournée vers l'avenir, garantissant son succès continu au 21e siècle et au-delà.

 

Gamme complète de produits

Electri-Flex propose une large gamme de conduits électriques flexibles, répondant à divers besoins et applications :

  • Conduit métallique gainé/non gainé : connu pour sa flexibilité et sa résistance, idéal pour divers environnements sans gaine extérieure. Il offre également une protection robuste avec une couche supplémentaire de matériau de gaine pour une durabilité et une résistance accrues aux facteurs environnementaux.
  • EMI/RFI Shield-Flex® : offre trois niveaux d'efficacité de blindage pour protéger les circuits électroniques sensibles contre les interférences électromagnétiques et radiofréquences. Disponible avec une gaine sans halogène pour plus de sécurité.
  • Conduit non métallique : léger et résistant à la corrosion, fabriqué en PVC flexible et rigide, adapté aux environnements corrosifs et aux applications sensibles au poids.
  • Conduit en acier inoxydable : offre une durabilité et une résistance à la corrosion exceptionnelles, adapté aux environnements difficiles ou à haute température.
  • Conduits spécialisés : leurs conduits sans halogène sont conçus pour minimiser la fumée toxique en cas d'incendie. Des conduits antimicrobiens sont également disponibles, incorporant des propriétés qui empêchent la croissance microbienne, ce qui les rend idéaux pour les environnements hygiéniques. Les conduits résistants à la corrosion sont conçus pour résister aux éléments corrosifs, garantissant des performances et une fiabilité à long terme. De plus, Electri-Flex fournit des conduits à basse et haute température qui restent flexibles dans les environnements froids et résistent au vieillissement à haute température. Ces options sont disponibles en versions non métalliques et métalliques gainées.

 

Bahra Électrique

5. Bahra Electric

 

Présentation et valeurs de l'entreprise

Fondée en 2008 sous le nom de Bahra Cables, Bahra Electric est rapidement devenue un acteur clé du secteur électrique. Initialement axée sur les fils et les câbles, l'entreprise est rapidement devenue le 48e plus grand fabricant de fils et de câbles au monde en seulement huit ans. Cette réussite reflète l'engagement de Bahra Electric en matière d'innovation, de qualité et de satisfaction de la clientèle. Dans le cadre de sa stratégie de croissance, Bahra Electric a diversifié son offre, produisant désormais une large gamme de produits électriques complémentaires, s'étendant à 11 lignes de produits principales qui répondent aux besoins critiques des clients de divers secteurs.

 

Offre de produits et engagement envers la qualité

  • Solutions de conduits : Bahra Electric fabrique une gamme de conduits, notamment des options extra-robustes, robustes, moyennement résistantes et légères. Ces conduits sont conformes aux normes internationales (NEMA, IEC, SASO) et sont conçus pour fournir une protection fiable du câblage électrique dans diverses applications.
  • Raccords et adaptateurs : L'entreprise propose une variété d'options de raccordement, notamment des raccords à double tube standard, extensibles et télescopiques. Bahra Electric fournit également des adaptateurs mâles et femelles, garantissant compatibilité et flexibilité lors de l'installation.
  • Coffrets et coudes : Bahra Electric produit une large sélection de coffrets électriques, tels que des boîtiers de raccordement, des boîtiers de bornes et des boîtiers d'angle, ainsi que des coudes robustes avec embouts à cloche ou raccords. Ces produits assurent un acheminement sûr et efficace des conduits électriques.
  • Selles et accessoires : La gamme de produits comprend des selles à sangles et des selles avec bases, ainsi que des accessoires essentiels tels que des couvercles circulaires, des anneaux d'extension, des boîtes adaptables, des ressorts de flexion et du ciment solvant PVC pour des installations en douceur.

 

Anamet

6. ANAMET Électrique, Inc.

 

Présentation et valeurs de l'entreprise

Fondée en 1908, ANAMET Electrical, Inc. s'est imposée comme un leader mondial dans la fabrication de systèmes de conduits flexibles et étanches aux liquides. Connue à l'origine pour son expertise dans les solutions de conduits durables, la société a élargi sa gamme de produits pour répondre aux besoins en constante évolution de diverses industries. ANAMET Electrical est réputée pour son engagement envers l'innovation, la qualité et la satisfaction de la clientèle, avec un accent particulier sur le respect de normes strictes de sécurité et de performance.

 

Offre de produits et engagement envers la qualité

  • Solutions de conduits : ANAMET Electrical propose une gamme complète de systèmes de conduits, notamment la série ANACONDA SEALTITE®. Ces produits sont conçus pour protéger les câbles et les fils électriques dans des environnements difficiles, offrant des solutions pour les installations extérieures, souterraines et en espaces confinés. Les options de conduits comprennent des types pour les températures extrêmes, les conditions corrosives et les applications spéciales telles que les environnements sans halogène et antistatiques.
  • Conduits métalliques flexibles : les conduits métalliques flexibles de la société sont disponibles dans des variétés homologuées UL et non homologuées. Ces conduits sont fabriqués à partir de divers métaux, notamment l'aluminium et l'acier galvanisé, offrant flexibilité et résistance à la corrosion et à l'écrasement. Ils conviennent aux applications commerciales, industrielles et OEM.
  • Conduits non métalliques : ANAMET propose des options non métalliques certifiées CSA et conformes à la directive RoHS. Ces conduits sont idéaux pour les applications nécessitant flexibilité, résistance à la corrosion et flexion continue. Les produits comprennent des conduits étanches aux liquides et non conducteurs avec divers matériaux de renforcement.
  • Conduits spéciaux : La gamme de conduits spéciaux de l'entreprise comprend des solutions pour un blindage de haut niveau, une résistance aux radiations et des températures extrêmes. Cela comprend des conduits conçus pour être utilisés dans les zones de confinement nucléaire, les environnements à haute température et les applications de qualité alimentaire.
  • Raccords et accessoires : La gamme de produits d'ANAMET Electrical comprend également un large choix de raccords et d'accessoires. Cela comprend des raccords métalliques et plastiques pour des connexions sécurisées, ainsi que des accessoires hautes performances tels que des fouets de fixation, des serre-câbles et des matériaux de protection contre l'incendie.

 

Institut des tubes d'acier

7. Institut des tubes d'acier

 

Présentation et valeurs de l'entreprise

Le Steel Tube Institute (STI) est une ressource essentielle et un leader dans l'industrie des tubes et conduits en acier. En mettant l'accent sur l'avancement des techniques de fabrication et la promotion des avantages des produits en acier, le STI collabore avec les principaux membres de l'industrie pour fournir des solutions innovantes pour divers secteurs. Sa mission est de fournir des produits de tubes en acier de haute qualité tout en éduquant les prescripteurs, les concepteurs et les constructeurs sur l'utilité et la polyvalence inégalées de l'acier dans les applications modernes.

 

Offre de produits et engagement envers la qualité

Le Steel Tube Institute est reconnu pour ses normes élevées et sa gamme diversifiée de produits en matière de conduits et de tubes en acier. Les produits de conduits en acier de STI font partie intégrante de sa mission, reflétant l'engagement de l'entreprise à fournir des solutions fiables, résilientes et durables pour les systèmes électriques.

  • Conduit métallique rigide (RMC) : Fabriqué pour offrir une durabilité maximale, le RMC est un produit essentiel pour les environnements nécessitant le plus haut niveau de protection mécanique. Le RMC de STI est conçu pour résister aux impacts physiques et aux contraintes environnementales sévères, ce qui le rend idéal pour les applications industrielles et extérieures. La résistance du produit reflète l'engagement de STI à produire des chemins de câbles qui protègent les conducteurs électriques dans les conditions les plus exigeantes.
  • Conduit métallique intermédiaire (IMC) : l'IMC de STI allie résistance et légèreté, offrant une solution flexible qui équilibre protection et facilité d'installation. L'IMC est parfait pour les projets qui nécessitent une protection robuste mais qui bénéficient d'une option de conduit plus légère et plus maniable, conformément à la mission de STI qui consiste à fournir des solutions polyvalentes pour une large gamme de projets.
  • Tubes électriques métalliques (EMT) : Reconnus pour leur simplicité d'utilisation et leur rentabilité, les tubes EMT de STI sont un produit incontournable pour les applications résidentielles et commerciales. Les tubes EMT offrent une protection fiable pour le câblage électrique dans les espaces qui ne nécessitent pas la résistance élevée des tubes RMC ou IMC, mais qui exigent néanmoins des performances de haute qualité. La nature légère et flexible des tubes EMT illustre l'objectif de STI de fournir des solutions flexibles, efficaces et fiables.

 

Tubes flexibles Whitehouse Ltée

8. Whitehouse Flexible Tubing Ltd

 

Présentation et valeurs de l'entreprise

Whitehouse Flexible Tubing Ltd est une entreprise familiale dont l'histoire remonte à la fin des années 1800, lorsque George Whitehouse a établi une fonderie de laiton à Birmingham. Au fil des ans, l'entreprise a évolué et s'est adaptée aux demandes du marché, passant de la fabrication de produits en laiton tels que des sommiers et des poignées de porte à la fabrication de solutions de tubes flexibles pour diverses applications industrielles. Guidée par quatre générations de dirigeants familiaux, l'entreprise a poursuivi son engagement envers l'innovation, la satisfaction des clients et la qualité. Aujourd'hui, Whitehouse Flexible Tubing Ltd reste à l'avant-garde de la fabrication de tubes flexibles, avec pour objectif de fournir des solutions fiables aux clients de différents secteurs.

 

Offre de produits et engagement envers la qualité

  • Conduits métalliques flexibles : Whitehouse Flexible Tubing Ltd produit une gamme variée de conduits métalliques flexibles, notamment des options recouvertes de PVC, galvanisées et en acier inoxydable. Ces conduits sont idéaux pour la protection des câbles électriques dans les applications de construction et industrielles. Le conduit recouvert de PVC en acier galvanisé offre une excellente protection grâce à son revêtement en PVC à faible émission de fumées (LSF), ce qui le rend adapté aux applications à usage général, tandis que le conduit non recouvert en acier inoxydable offre une résistance accrue à la température pour les environnements exigeants.
  • Raccords et accessoires : L'entreprise fabrique également une variété de raccords de haute qualité pour compléter ses produits de conduits. Il s'agit notamment du raccord de conduit pivotant, un raccord en laiton nickelé en deux pièces conçu pour une installation facile, et du raccord de conduit mâle fixe, qui offre une connexion sûre et durable. Whitehouse fournit également des raccords à trou simple, idéaux pour les installations sans soudure dans divers environnements.

 

Champion en fibre de verre

9. Champion en fibre de verre

 

Présentation et valeurs de l'entreprise

Fondée avec la vision de révolutionner les solutions de conduits, Champion Fiberglass est devenue un nom de premier plan dans l'industrie, connu pour son innovation et son engagement envers l'excellence. L'entreprise se spécialise dans la production de conduits en fibre de verre de haute qualité (RTRC), un matériau de plus en plus prisé pour ses propriétés légères mais durables.

Champion Fiberglass s'engage à assurer la durabilité et l'efficacité, comme en témoignent ses processus de fabrication de pointe qui optimisent les performances tout en réduisant les coûts. En mettant l'accent sur l'innovation et la satisfaction de la clientèle, l'entreprise aide les ingénieurs et les professionnels de l'industrie à atteindre leurs objectifs de projet en toute confiance.

 

Offre de produits et engagement envers la qualité

  • Champion Fiberglass propose une gamme diversifiée de produits de haute qualité conçus pour améliorer les performances et la durabilité dans diverses applications
  • Champion Duct : propose des solutions de conduits en fibre de verre robustes et flexibles conçues pour fournir une protection et des performances fiables aux systèmes électriques, même dans les environnements exigeants.
  • Coudes en fibre de verre Champion : coudes conçus avec précision qui facilitent les changements de direction fluides et efficaces dans les systèmes de conduits, garantissant une installation transparente et une efficacité opérationnelle.
  • Conduit phénolique Champion Flame Shield : offre une résistance au feu exceptionnelle pour les applications nécessitant une sécurité et une protection renforcées contre les risques d'incendie.
  • Champion Haz Duct XW Type : Conduit spécialisé pour les environnements dangereux, offrant une protection supérieure et garantissant le respect de normes de sécurité strictes.
  • Champion Utility & Pole Risers : élévateurs durables conçus pour les applications utilitaires et sur poteaux, garantissant des connexions sûres et fiables dans diverses conditions environnementales.

 

Ctube

10. Ctube

 

Présentation et valeurs de l'entreprise

 

Ctube, une première Fabricant de conduits et raccords en PVC Basée en Chine, Ctube est réputée pour son engagement à fournir des solutions de haute qualité pour la gestion et la protection des câbles. Fondée en mettant l'accent sur l'innovation et l'excellence, Ctube a acquis une réputation de partenaire de confiance dans l'industrie des conduits électriques en investissant continuellement dans des technologies de fabrication avancées et en maintenant une approche centrée sur le client. Le dévouement de l'entreprise aux processus de fabrication avancés et au contrôle qualité rigoureux garantit que ses produits répondent systématiquement aux normes de performance et de fiabilité les plus élevées, renforçant ainsi sa position de leader dans le domaine.

 

Offre de produits et engagement envers la qualité

La vaste gamme de produits Ctube est connue pour sa durabilité, sa flexibilité et sa protection supérieure du câblage électrique, garantissant des performances durables et efficaces dans diverses applications. La gamme comprend :

  • Conduits rigides en PVC et tubes électriques non métalliques (ENT) : Conçus pour une gestion de câbles polyvalente et fiable dans diverses applications, ces produits offrent une excellente résistance aux chocs, aux produits chimiques et aux facteurs environnementaux, ce qui les rend adaptés aux environnements résidentiels et industriels.
  • Raccords de conduits : une sélection complète de raccords, notamment des raccords, des boîtiers adaptables et des adaptateurs mâles, garantissant des connexions sans faille et l'intégrité du système. Ces raccords sont conçus pour fournir des jonctions sûres et fiables, évitant ainsi des problèmes tels que les fuites et les déconnexions.
  • Conduits à faible émission de fumée sans halogène:Spécialement conçu pour émettre un minimum de fumée et aucun gaz toxique en cas d'incendie, améliorant ainsi la sécurité dans les environnements critiques tels que les hôpitaux, les écoles et les bâtiments commerciaux. Cela garantit une gestion plus efficace des situations d'urgence, minimisant ainsi les risques pour la vie et les biens.
  • Conduits solaires photovoltaïques:Conçus pour résister aux conditions extérieures extrêmes avec une résistance exceptionnelle aux UV, ces conduits sont essentiels pour les systèmes d'énergie solaire, y compris le plus grand projet solaire au monde, le projet d'énergie solaire PV2 d'Abu Dhabi Al Dhafra. Leur conception robuste assure des performances et une fiabilité à long terme dans des conditions environnementales difficiles.

Le produit est conforme à la norme AS/NZS 2053, Listes UL, et la certification CSA, reflétant l'adhésion de Ctube aux normes de qualité et de sécurité les plus élevées. Cet engagement garantit non seulement la fiabilité et la durabilité de leurs produits, mais renforce également l'engagement de Ctube à répondre aux références mondiales de l'industrie et aux attentes des clients.

Top 10 des fournisseurs de conduits électriques à Singapour En savoir plus "

Tout ce que vous devez savoir sur la taille des conduits électriques

Tout ce que vous devez savoir sur la taille des conduits électriques

1. Introduction

Les conduits électriques sont des composants essentiels des systèmes électriques modernes, servant de tube de protection pour le câblage électrique. Ils protègent les fils contre les dommages physiques, l'humidité et l'exposition aux produits chimiques tout en facilitant également un acheminement organisé et sûr des circuits électriques. Les conduits électriques sont disponibles dans divers matériaux, tels que le métal, le plastique et des options flexibles, chacun étant adapté à différents environnements et applications. Qu'ils soient utilisés dans un environnement résidentiel, commercial ou industriel, les conduits jouent un rôle crucial dans le maintien de l'intégrité et de la sécurité des installations électriques.

en savoir plus sur les tailles de conduits

Choisir la bonne taille de conduit est primordial pour garantir la sécurité et l’efficacité d’un système électrique. Un conduit de taille appropriée offre suffisamment d'espace pour les fils, évitant ainsi la surchauffe et permettant une maintenance et des mises à niveau futures faciles. À l’inverse, un conduit sous-dimensionné peut entraîner une accumulation excessive de chaleur, une augmentation de la résistance électrique et des risques potentiels d’incendie. De plus, le respect des réglementations en matière de dimensionnement des conduits est essentiel pour se conformer aux codes et normes du bâtiment, conçus pour protéger à la fois les biens et les vies humaines. Un dimensionnement approprié des conduits facilite également des installations plus fluides et réduit les coûts de main-d'œuvre et de matériaux.

Cet article se penche sur les aspects critiques du dimensionnement des conduits électriques, fournissant un guide complet pour les professionnels et les bricoleurs. Nous explorerons les concepts fondamentaux de la taille des conduits, examinerons les différents types de conduits et leurs gammes de tailles respectives, et discuterons des différents facteurs influençant le choix de la taille des conduits. De plus, nous présenterons les tailles de conduits standard et leurs applications, fournirons des méthodes détaillées de calcul de dimensionnement et mettrons en évidence les erreurs courantes à éviter. Des considérations avancées, telles que les types de conduits spécialisés et la comparaison des normes de dimensionnement, seront également abordées.

en savoir plus sur les tailles de conduits

2. Comprendre les tailles de conduits électriques

Le dimensionnement des conduits électriques est un aspect crucial des installations électriques, influençant la sécurité, l'efficacité et la conformité des systèmes électriques. Cette section approfondit la définition de la taille des conduits, les unités de mesure courantes utilisées et l'importance cruciale d'une mesure précise dans les installations électriques.

2.1 Définition de la taille du conduit

La taille d'un conduit électrique est définie par son diamètre interne (ID), qui détermine la quantité d'espace disponible pour loger les fils électriques. La taille du conduit est cruciale car elle doit s'adapter au nombre et à la taille requis des conducteurs tout en permettant un fonctionnement et un entretien ultérieurs en toute sécurité. Le diamètre interne est la dimension la plus critique car il a un impact direct sur la capacité et le débit d'air à l'intérieur du conduit, affectant ainsi les performances thermiques et la facilité d'installation des câbles.

en savoir plus sur les tailles de conduits

La taille du conduit comprend également le diamètre externe (OD), qui est important pour l'installation du conduit dans les boîtes de jonction, les panneaux et autres appareils. Cependant, le diamètre interne reste l'objectif principal lors de l'examen de la taille du conduit, car il est directement lié à la capacité de remplissage du câble, c'est-à-dire le nombre maximum de conducteurs pouvant être installés en toute sécurité dans le conduit sans dépasser les limites autorisées.

Un autre facteur à prendre en compte dans le dimensionnement des conduits est l'épaisseur de la paroi, qui est particulièrement importante pour les conduits en polychlorure de vinyle (PVC). L'épaisseur de la paroi a un impact sur la durabilité du conduit, sa résistance aux dommages physiques et sa capacité à protéger les fils enfermés. Par exemple, les conduits en PVC Schedule 40 et Schedule 80 ont des épaisseurs de paroi différentes, le Schedule 80 ayant une paroi plus épaisse, offrant une plus grande résistance et protection, en particulier dans les zones sujettes aux impacts physiques ou où une résistance mécanique plus élevée est requise.

en savoir plus sur les tailles de conduits

La taille nominale des tuyaux (NPS) est un ensemble nord-américain de tailles standard pour les tuyaux utilisés pour des pressions et des températures élevées ou basses. « Nominal » fait référence à un tuyau en termes non spécifiques et identifie le diamètre du trou avec un numéro non dimensionnel (par exemple, un tuyau en acier nominal de 2 pouces » comprend de nombreuses variétés de tuyaux en acier, le seul critère étant un 2,375- pouces (60,3 mm) de diamètre extérieur). Un tuyau spécifique est identifié par son diamètre et un autre numéro non dimensionnel pour l'épaisseur de paroi appelé « Schedule » (Sched. ou Sch., par exemple, tuyau de 2 pouces de diamètre, Schedule 40″).

Différents types de conduits, tels que les conduits métalliques rigides (RMC), les tubes électriques métalliques (EMT) et les conduits en PVC, ont des désignations de taille et des normes spécifiques qui dictent leurs dimensions, y compris l'épaisseur de la paroi. Ces normes garantissent la compatibilité et la sécurité entre différentes installations et applications.

2.2 Unités de mesure courantes (pouces, millimètres)

Les tailles des conduits sont généralement mesurées en pouces ou en millimètres, selon la région et les normes industrielles spécifiques en vigueur. Le choix de l’unité de mesure s’aligne souvent sur les normes électriques et de construction plus larges d’un pays ou d’une région donnée.

en savoir plus sur les tailles de conduits

Aux États-Unis et dans de nombreux autres pays qui suivent le National Electrical Code (NEC), les dimensions des conduits sont généralement exprimées en pouces. Le NEC fournit des directives détaillées pour le dimensionnement des conduits, spécifiant le diamètre interne, l'épaisseur de paroi et le remplissage de câble autorisé pour chaque type de conduit. Les tailles courantes vont de 1/2 pouce à 6 pouces, chaque taille servant différentes applications en fonction de la charge électrique requise et du nombre de conducteurs.

En revanche, de nombreux pays européens et d'autres qui adhèrent aux normes de la Commission électrotechnique internationale (CEI) utilisent le système métrique, mesurant la taille des conduits en millimètres. Par exemple, les tailles de conduits métriques courantes peuvent inclure 16 mm, 20 mm, 25 mm et plus, chaque taille correspondant à des applications et exigences d'installation spécifiques.

Comprendre la conversion entre ces unités est essentiel pour les professionnels travaillant sur les marchés mondiaux ou avec des clients internationaux. Par exemple, 1 pouce équivaut approximativement à 25,4 millimètres. Ces connaissances garantissent des spécifications précises et une compatibilité entre différentes régions et normes.

2.3 Importance d'une mesure précise dans les installations électriques

Une mesure précise de la taille des conduits est essentielle pour plusieurs raisons, qui ont toutes un impact direct sur la sécurité, la fonctionnalité et la conformité des installations électriques.

2.3.1 Garantir une capacité de remplissage de câble adéquate

Les conduits correctement dimensionnés doivent s'adapter au nombre et à la taille des conducteurs sans dépasser la capacité de remplissage autorisée. Un remplissage excessif d'un conduit peut entraîner une augmentation de la résistance électrique, une surchauffe et des risques potentiels d'incendie. Une mesure précise garantit que la taille du conduit correspond aux exigences de charge électrique et à l'espace physique nécessaire pour une installation sûre des câbles.

en savoir plus sur les tailles de conduits

Par exemple, un conduit trop petit pour les fils qu’il abrite peut provoquer une accumulation excessive de chaleur, ce qui peut endommager l’isolation et augmenter le risque d’incendie. En revanche, un conduit de taille appropriée permet une circulation d’air et une dissipation thermique adéquates, garantissant ainsi un fonctionnement sûr et efficace.

2.3.2 Conformité aux codes et normes électriques

NEC

Les codes électriques, tels que le NEC, fournissent des directives spécifiques pour le dimensionnement des conduits en fonction du type d'installation et des conditions environnementales. Le respect de ces normes constitue non seulement une exigence légale, mais également une bonne pratique pour garantir la sécurité et la fiabilité. Des mesures précises et un dimensionnement correct des conduits sont essentiels au respect de ces codes, évitant ainsi les violations et sanctions potentielles.

Par exemple, le NEC stipule le nombre maximum de conducteurs pouvant être installés dans une taille de conduit donnée pour éviter la surchauffe et garantir une maintenance aisée. Des mesures précises garantissent le respect de ces réglementations, conçues pour protéger à la fois les biens et les vies humaines.

2.3.3 Faciliter l'installation et la maintenance

Des conduits correctement dimensionnés simplifient le processus d'installation en fournissant un espace suffisant pour tirer et acheminer les conducteurs. Cela réduit le risque de dommages aux câbles lors de l'installation et rend la maintenance et les mises à niveau futures plus faciles à gérer. Une mesure précise garantit également que les raccords, les connecteurs et les boîtes de jonction correspondent aux dimensions du conduit, favorisant ainsi un processus d'installation fluide et efficace.

Par exemple, lors d'une rénovation ou d'une mise à niveau, disposer de conduits de taille adéquate facilite l'ajout d'un nouveau câblage ou le remplacement de conducteurs existants sans retouches approfondies. Cela permet non seulement d'économiser du temps et des coûts de main-d'œuvre, mais minimise également les perturbations du système électrique.

2.3.4 Optimisation des performances du système

La bonne taille de conduit aide à maintenir des performances optimales du système en minimisant la résistance électrique et l’accumulation de chaleur. Ceci est particulièrement important dans les installations de forte puissance où une dissipation efficace de la chaleur est cruciale. Des mesures précises et un dimensionnement approprié des conduits contribuent à l’efficacité globale et à la longévité du système électrique.

Par exemple, dans les environnements industriels avec des charges électriques élevées, l’utilisation de conduits trop petits peut entraîner des pertes d’énergie importantes en raison d’une résistance accrue. Des conduits correctement dimensionnés réduisent ces pertes, améliorant ainsi l’efficacité globale du système électrique et réduisant les coûts d’exploitation.

2.3.5 Prise en compte des facteurs environnementaux

Différents environnements d'installation, tels que les endroits humides, les zones corrosives ou les zones à haute température, peuvent nécessiter des types et des tailles de conduits spécifiques. Une mesure précise garantit que la taille et le matériau du conduit choisi sont adaptés aux conditions environnementales, protégeant les conducteurs des dommages externes et garantissant une fiabilité à long terme.

Par exemple, dans les environnements avec des niveaux d'humidité élevés, tels que les installations souterraines ou extérieures, il est essentiel de sélectionner un conduit de taille et de matériau appropriés (par exemple, du PVC pour la résistance à la corrosion) pour empêcher l'infiltration d'eau et les dommages ultérieurs aux conducteurs.

3. Types de conduits électriques et leurs plages de tailles

Les conduits électriques sont disponibles en différents types, chacun étant conçu pour des applications et des environnements spécifiques. Comprendre les différents types de conduits et leurs gammes de tailles est crucial pour sélectionner le bon conduit pour une installation électrique donnée. Cette section fournit des informations détaillées sur les types courants de conduits électriques, leurs plages de tailles typiques et leurs applications.

3.1 Conduit métallique rigide (RMC)

CMR

Gammes de tailles typiques :

– RMC est disponible dans des tailles allant de 1/2 pouce à 6 pouces de diamètre.

Les usages:

– Le RMC est l'un des types de conduits les plus lourds et les plus durables, souvent utilisé dans les environnements industriels et commerciaux où la protection contre les dommages physiques est essentielle.

– Il convient aux installations intérieures et extérieures, y compris aux zones exposées à des conditions environnementales difficiles.

– Le RMC peut être utilisé dans des endroits exposés et dissimulés, offrant une excellente protection contre les dommages physiques et la corrosion.

3.2 Conduit métallique intermédiaire (IMC)

IMC

Gammes de tailles typiques :

– IMC est disponible dans des tailles allant de 1/2 pouce à 4 pouces de diamètre.

Les usages:

– IMC est plus léger que RMC mais offre toujours une protection robuste contre les dommages physiques.

– Il est couramment utilisé dans les applications commerciales et industrielles où un équilibre entre résistance et poids est nécessaire.

– IMC convient aux installations exposées et dissimulées et peut être utilisé dans des environnements intérieurs et extérieurs.

3.3 Tubes électriques métalliques (EMT)

EMT

Gammes de tailles typiques :

– EMT est disponible dans des tailles allant de 1/2 pouce à 4 pouces de diamètre.

Les usages:

– L'EMT est un conduit léger à paroi mince souvent utilisé dans les applications résidentielles, commerciales et industrielles légères.

– Il est généralement utilisé pour les installations intérieures où il est moins susceptible d'être soumis à des dommages physiques.

– EMT est populaire pour sa facilité d'installation et sa flexibilité de routage, ce qui le rend idéal pour les projets où des modifications rapides et faciles sont nécessaires.

3.4 Conduit métallique flexible (FMC)

FMC

Gammes de tailles typiques :

– FMC est disponible dans des tailles de 3/8 pouces à 4 pouces de diamètre.

Les usages:

– Le FMC, également connu sous le nom de « flex » ou « Greenfield », est utilisé là où la flexibilité est requise, comme dans les zones avec des virages serrés ou là où des vibrations et des mouvements sont présents.

– Il est souvent utilisé dans les applications commerciales et industrielles, notamment pour connecter des équipements nécessitant un mouvement ou un réglage.

– FMC convient aux installations intérieures, offrant une solution flexible pour les itinéraires de câblage complexes.

3.5 Conduit métallique flexible étanche aux liquides (LFMC)

Conduit métallique flexible étanche aux liquides

Gammes de tailles typiques :

– LFMC est disponible dans des tailles de 3/8 pouces à 4 pouces de diamètre.

Les usages:

– LFMC est conçu pour les applications où la flexibilité et la résistance à l’humidité sont requises.

– Il est couramment utilisé dans les installations extérieures, les endroits humides et les zones sujettes à l’exposition à l’eau, telles que le câblage des machines-outils et l’éclairage extérieur.

– Le LFMC offre une excellente protection contre les liquides, les huiles et les environnements corrosifs, ce qui le rend adapté à une large gamme d'applications industrielles et commerciales.

3.6 Conduit en chlorure de polyvinyle (PVC)

Conduit en PVC

Gammes de tailles typiques :

– Les conduits en PVC sont disponibles dans des tailles allant de 1/2 pouce à 8 pouces de diamètre.

Les usages:

– Les conduits en PVC sont largement utilisés dans les applications résidentielles, commerciales et industrielles en raison de leur durabilité, de leur résistance à la corrosion et de leur rentabilité.

– Il convient aussi bien aux installations aériennes qu’aux installations souterraines, y compris l’enfouissement direct dans le béton ou la terre.

– Les conduits en PVC sont souvent utilisés dans des environnements humides ou corrosifs où les conduits métalliques ne seraient pas adaptés.

3.7 Tubes électriques non métalliques (ENT)

conduit flexible ent

Gammes de tailles typiques :

– ENT est disponible dans des tailles de 1/2 à 2 1/2 pouces de diamètre.

Les usages:

– ENT est un conduit flexible, léger et non métallique utilisé principalement dans les applications résidentielles et commerciales légères.

– Il est facile à installer, nécessitant un minimum d’outils et de raccords, ce qui le rend idéal pour les projets de nouvelle construction et de rénovation.

– ENT convient aux installations intérieures, y compris aux emplacements dissimulés dans les murs, les sols et les plafonds.

4. Facteurs influençant la sélection de la taille des conduits

La sélection de la bonne taille de conduit pour une installation électrique est une étape critique pour garantir la sécurité, l’efficacité et la longévité du système électrique. Plusieurs facteurs influencent le choix de la taille des conduits, chacun d'entre eux devant être soigneusement pris en compte pour garantir la conformité aux normes réglementaires et une performance optimale. 

4.1 Charge électrique et taille des conducteurs

L'un des facteurs les plus importants influençant le choix de la taille des conduits est la charge électrique et la taille des conducteurs requis pour supporter cette charge. La charge électrique fait référence à la quantité totale d'énergie électrique qui sera transmise à travers les conducteurs à l'intérieur du conduit. À mesure que la charge électrique augmente, des conducteurs plus gros sont nécessaires pour gérer le courant sans surchauffe, ce qui nécessite à son tour une taille de conduit plus grande pour accueillir ces conducteurs.

– Ampacité : L'intensité admissible d'un conducteur est la quantité maximale de courant électrique qu'il peut transporter sans dépasser sa température nominale. Des conducteurs plus gros avec une intensité admissible plus élevée sont nécessaires pour des charges électriques plus élevées, et ces conducteurs nécessitent plus d'espace dans le conduit.

en savoir plus sur les tailles de conduits

– Nombre de conducteurs : le nombre total de conducteurs devant être logés dans un conduit affecte également la taille requise du conduit. Chaque conducteur occupe de l'espace et un espace suffisant doit être laissé pour la dissipation de la chaleur et pour faciliter le tirage des fils à travers le conduit.

Par exemple, un conduit qui abritera plusieurs gros conducteurs pour une application industrielle de forte puissance devra être nettement plus grand qu'un conduit utilisé pour une application résidentielle de faible puissance avec des conducteurs moins nombreux et plus petits. Des calculs précis basés sur la charge électrique et les tailles de conducteurs requises sont essentiels pour sélectionner la taille de conduit appropriée.

4.2 Type de système de câblage

Le type de système de câblage utilisé dans une installation électrique peut également avoir un impact sur le choix de la taille du conduit. Différents systèmes de câblage ont des exigences spécifiques en matière de dimensionnement des conduits en fonction de la nature de l'installation et du type de conducteurs utilisés.

câbles-électriques-en savoir plus sur les tailles de conduits

– Conducteurs simples : lorsque des conducteurs simples sont utilisés, le conduit doit être dimensionné pour permettre un espace suffisant pour chaque conducteur, en veillant à ce que le pourcentage de remplissage du conduit ne dépasse pas la limite autorisée.

– Câbles : lorsque des câbles (tels que des câbles multiconducteurs) sont utilisés, le conduit doit être dimensionné pour s'adapter au diamètre extérieur du câble et garantir qu'il y a suffisamment d'espace pour une bonne dissipation de la chaleur et une installation facile.

– Faisceaux de câbles : dans les installations où plusieurs câbles sont regroupés, la taille du conduit doit être augmentée pour tenir compte de l'espace supplémentaire requis pour le faisceau et pour éviter la surchauffe due à la capacité réduite à dissiper la chaleur.

Par exemple, dans un bâtiment commercial doté de systèmes de réseau et de communication étendus, les conduits peuvent devoir accueillir des câbles de données groupés, ce qui nécessite un examen attentif de la taille des conduits pour éviter l'encombrement et maintenir les performances du système.

4.3 Conditions environnementales

Les conditions environnementales jouent un rôle crucial dans le choix de la taille des conduits. Des facteurs tels que la température, l'humidité et l'exposition à des produits chimiques peuvent affecter les performances et la durabilité du conduit et de son contenu.

– Température : Des températures élevées peuvent provoquer une surchauffe des conducteurs, ce qui nécessite des conduits de plus grande taille pour garantir une circulation d'air et une dissipation thermique adéquates. A l’inverse, dans les environnements froids, les conduits doivent pouvoir résister aux basses températures sans devenir cassants.

– Humidité et humidité : dans les environnements mouillés ou humides, les conduits doivent être dimensionnés pour accueillir des conducteurs résistants à l'humidité ou étanches. Des conduits plus grands peuvent être nécessaires pour empêcher l’infiltration d’eau et assurer la longévité du système électrique.

– Exposition aux produits chimiques : dans les environnements industriels où les conduits peuvent être exposés à des produits chimiques corrosifs, la sélection du matériau et de la taille appropriés est essentielle pour protéger les conducteurs des dommages chimiques. Des conduits plus grands peuvent être nécessaires pour permettre l'installation de revêtements ou de revêtements protecteurs.

Par exemple, dans les installations extérieures exposées à des conditions météorologiques variables, il est crucial d’utiliser des conduits capables de résister à des températures et à une humidité extrêmes. La taille du conduit doit être choisie de manière à garantir qu'il peut protéger les conducteurs des dommages environnementaux tout en préservant l'intégrité du système.

en savoir plus sur les dimensions des conduits tableau 310

4.4 Exigences réglementaires et du code

Les exigences réglementaires et codes sont des facteurs critiques dans la sélection de la taille des conduits. Les codes électriques, tels que le National Electrical Code (NEC) aux États-Unis, fournissent des directives détaillées pour le dimensionnement des conduits en fonction des normes de sécurité et de performance.

Considérations réglementaires clés : - Limites de remplissage des conduits : les codes précisent le pourcentage de remplissage maximum autorisé pour les conduits, garantissant ainsi qu'il y a suffisamment d'espace pour la dissipation thermique et la facilité d'installation. Le dépassement de ces limites peut entraîner une surchauffe et un risque accru d'incendie.

– Exigences d'espacement et de support : les codes dictent également les exigences d'espacement et de support pour les conduits, ce qui peut avoir un impact sur la taille et le type de conduit utilisé. Les conduits correctement soutenus et espacés sont moins susceptibles de subir des dommages et des contraintes mécaniques.

– Spécifications des matériaux : les codes peuvent spécifier les matériaux adaptés à différents environnements et applications, influençant le choix de la taille et du type de conduit en fonction des exigences spécifiques de l'installation.

en savoir plus sur les tailles de conduits

Par exemple, le respect des exigences NEC en matière de remplissage et de support des conduits garantit que l'installation est sûre, fiable et conforme aux normes légales. Le respect de ces réglementations permet de prévenir les dangers potentiels et garantit que le système électrique fonctionne comme prévu.

4.5 Considérations sur l'expansion et la maintenance futures

La planification de l'expansion et de la maintenance futures est un aspect important du choix de la taille des conduits. Anticiper les besoins futurs peut éviter des modifications coûteuses et perturbatrices du système électrique.

– Capacité future : la sélection d'une taille de conduit permettant une expansion future du système électrique peut permettre d'économiser du temps et des ressources. Les conduits plus grands offrent un espace supplémentaire pour les nouveaux conducteurs, s'adaptant ainsi à des charges électriques accrues sans nécessiter de retouches importantes.

en savoir plus sur les tailles de conduits

– Facilité de maintenance : des conduits correctement dimensionnés facilitent la maintenance et les mises à niveau. Les conducteurs peuvent être retirés et remplacés plus facilement, réduisant ainsi les temps d'arrêt et les coûts de main d'œuvre.

– Flexibilité : les conduits légèrement surdimensionnés offrent une flexibilité pour les modifications du système de câblage, permettant des adaptations rapides aux nouvelles technologies et exigences.

Par exemple, dans les bâtiments commerciaux où de futures mises à niveau des systèmes électriques et de communication sont probables, la sélection de tailles de conduits permettant des conducteurs et des câbles supplémentaires peut réduire considérablement la complexité et le coût des modifications futures. Cette approche proactive garantit que le système électrique reste adaptable et résilient dans le temps.

5. Calculs et méthodes de dimensionnement

Un dimensionnement précis des conduits électriques est essentiel pour garantir la sécurité et l’efficacité des installations électriques. Cet article abordera les différentes méthodes de dimensionnement des conduits, les directives du National Electrical Code (NEC), les étapes détaillées de dimensionnement des conduits et des exemples pratiques pour aider les lecteurs à comprendre le processus.

5.1 Aperçu des méthodes de dimensionnement

Plusieurs méthodes sont utilisées pour déterminer la taille appropriée des conduits électriques. Ces méthodes prennent en compte des facteurs tels que le nombre et la taille des fils, le type de matériau du conduit et l'environnement d'installation. Les principales méthodes comprennent :

nec-chapter-9-table-1 en savoir plus sur les tailles de conduits

– Calcul du remplissage des conduits : cette méthode consiste à calculer la section transversale totale de tous les conducteurs pour garantir qu'ils ne dépassent pas le pourcentage de remplissage maximum autorisé par le NEC.

– Prise en compte de la chute de tension : cette méthode garantit que la taille du conduit est adéquate pour minimiser la chute de tension, qui peut affecter les performances de l'équipement électrique.

– Facteurs de déclassement : cette méthode prend en compte des facteurs tels que la température ambiante et le nombre de conducteurs porteurs de courant, qui peuvent affecter la taille du conduit.

5.2 Lignes directrices du Code national de l'électricité (NEC)

Le NEC fournit des directives complètes pour le dimensionnement des conduits électriques. Ces directives sont cruciales pour garantir la sécurité et le respect des codes électriques. Les principales considérations du NEC comprennent :

– Limites de remplissage des conduits : le NEC spécifie des limites de remplissage maximales pour différents types de conduits afin d'éviter la surchauffe et de garantir un tirage facile des câbles. Par exemple, la limite de remplissage est généralement de 40% pour un conduit comportant plus de deux conducteurs.

– Ajustements de la température ambiante : le NEC fournit des facteurs de correction pour les conduits installés dans des environnements dont les températures sont différentes de la température de référence standard.

– Nombre de conducteurs : le NEC a des directives spécifiques pour déclasser l'intensité admissible des conducteurs en fonction du nombre de conducteurs porteurs de courant dans un conduit.

5.3 Étapes détaillées pour le dimensionnement des conduits

Pour dimensionner correctement un conduit, suivez ces étapes détaillées :

1. Déterminez le type de conduit : Choisissez le matériau de conduit approprié (par exemple, PVC, EMT, RMC) en fonction de l'environnement d'installation et des exigences du projet.

2. Identifiez le nombre et la taille des conducteurs : répertoriez tous les conducteurs qui seront placés dans le conduit, y compris leurs tailles (en AWG ou kcmil).

3. Calculez la superficie totale de la section transversale : À l'aide du chapitre 9 du NEC, tableau 5, déterminez la superficie de la section transversale de chaque conducteur. Additionnez ces surfaces pour trouver la surface transversale totale de tous les conducteurs.

4. Appliquez les limites de remplissage des conduits : reportez-vous au chapitre 9 du NEC, tableau 1, pour connaître le pourcentage de remplissage maximum autorisé pour votre type de conduit. Assurez-vous que la section transversale totale des conducteurs ne dépasse pas cette limite.

5. Tenez compte des facteurs de chute de tension et de déclassement : utilisez l'article 310 et l'annexe B du NEC pour ajuster les facteurs de chute de tension et de déclassement. Assurez-vous que la taille du conduit tient compte de ces ajustements.

6. Sélectionnez la taille du conduit : en fonction de la surface transversale totale ajustée, sélectionnez la taille de conduit appropriée dans le chapitre 9 du NEC, tableau 4.

en savoir plus sur les tailles de conduits NEC Chapitre 9 Tableau 4.

5.4 Exemples de calculs de dimensionnement

Exemple 1: Dimensionnement d'un conduit pour un circuit d'éclairage résidentiel

Projet : Un circuit d'éclairage résidentiel nécessite trois conducteurs 12 AWG (deux conducteurs porteurs de courant et une terre).

Calcul étape par étape :

1. Type de conduit : Conduit en PVC.

2. Nombre et taille des conducteurs : Trois conducteurs 12 AWG.

3. Surface de la section transversale : D'après le chapitre 9 du NEC, tableau 5, la surface de la section transversale d'un conducteur 12 AWG est de 0,0133 pouces carrés. Pour trois conducteurs, la superficie totale est de 3 x 0,0133 = 0,0399 pouces carrés.

4. Limites de remplissage des conduits : Pour plus de deux conducteurs, la limite de remplissage maximale est de 40% pour les conduits en PVC. D'après le chapitre 9 du NEC, tableau 4, un conduit en PVC de 1/2 pouce a une section transversale totale de 0,121 pouce carré. 40% de 0,121 correspond à 0,0484 pouces carrés.

5. Chute de tension et déclassement : supposons des conditions standard sans chute de tension significative ni facteurs de déclassement.

6. Taille du conduit : La superficie totale de 0,0399 pouce carré est inférieure à la limite de remplissage 40% de 0,0484 pouce carré pour un conduit en PVC de 1/2 pouce. Par conséquent, un conduit en PVC de 1/2 pouce est approprié.

Exemple 2 : Dimensionnement d'un conduit pour un circuit de distribution d'énergie commerciale

Projet : Un circuit de distribution d'énergie commercial nécessite cinq conducteurs 8 AWG (quatre conducteurs porteurs de courant et une terre).

Calcul étape par étape :

1. Type de conduit : conduit EMT.

2. Nombre et taille des conducteurs : cinq conducteurs 8 AWG.

3. Surface de la section transversale : D'après le chapitre 9 du NEC, tableau 5, la surface de la section transversale d'un conducteur 8 AWG est de 0,0366 pouces carrés. Pour cinq conducteurs, la superficie totale est de 5 x 0,0366 = 0,183 pouces carrés.

4. Limites de remplissage des conduits : pour plus de deux conducteurs, la limite de remplissage maximale est de 40% pour les conduits EMT. D'après le chapitre 9 du NEC, tableau 4, un conduit EMT de 1 pouce a une section transversale totale de 0,346 pouce carré. 40% de 0,346 correspond à 0,1384 pouces carrés.

5. Chute de tension et déclassement : vérifiez les facteurs de déclassement dus à la température ambiante ou au nombre de conducteurs. Ajustez l’intensité admissible si nécessaire.

6. Taille du conduit : La superficie totale de 0,183 pouce carré dépasse la limite de remplissage 40% de 0,1384 pouce carré pour un conduit EMT de 1 pouce. Un conduit de plus grande taille est donc nécessaire. Un conduit EMT de 1 1/4 pouce a une section transversale totale de 0,598 pouce carré. 40% de 0,598 correspond à 0,2392 pouces carrés, ce qui est suffisant. Par conséquent, un conduit EMT de 1 1/4 pouce est approprié.

6. Outils et ressources pour mesurer les tailles de conduits

Une mesure précise des tailles de conduits est cruciale pour garantir le bon ajustement et le bon fonctionnement des systèmes électriques. Cet article couvrira les outils courants utilisés pour la mesure, des conseils pour obtenir des mesures précises, ainsi que les meilleurs calculateurs et logiciels en ligne disponibles pour vous aider au dimensionnement des conduits.

6.1 Outils courants utilisés pour la mesure

Plusieurs outils sont couramment utilisés pour mesurer avec précision les dimensions des conduits. Ces outils garantissent que vous sélectionnez la taille de conduit appropriée pour votre projet, minimisant ainsi les erreurs et garantissant la conformité aux codes électriques.

6.1.1 Ruban à mesurer

en savoir plus sur les tailles de conduits

Un ruban à mesurer est un outil basique mais essentiel pour mesurer la longueur et le diamètre des conduits. Assurez-vous que votre ruban à mesurer est durable et comporte des marquages clairs pour des mesures précises.

– Utilisation : Mesurez le diamètre extérieur et la longueur du conduit.

– Astuce : utilisez un ruban avec des unités impériales et métriques pour plus de polyvalence.

6.1.2 Étriers

Les pieds à coulisse sont des instruments de précision utilisés pour mesurer avec précision les diamètres intérieur et extérieur des conduits. Ils sont disponibles en versions numérique, cadran et vernier.

– Utilisation : Mesurez les diamètres intérieur et extérieur du conduit avec une grande précision.

– Astuce : utilisez des pieds à coulisse numériques pour des lectures rapides et précises.

6.1.3 Cintreuses de conduits

En savoir plus sur les tailles de conduits

Les cintreuses de conduits sont des outils spécialisés utilisés pour plier les conduits aux angles souhaités. Bien qu'ils ne constituent pas directement un outil de mesure, ils comportent des marquages qui permettent de mesurer le rayon et l'angle de courbure.

– Utilisation : Pliez les conduits en veillant au bon rayon et à l’angle de courbure.

– Astuce : Entraînez-vous à utiliser la cintreuse pour réaliser des cintrages précis sans plier le conduit.

6.1.4 Micromètres

Les micromètres sont utilisés pour des mesures très précises de l'épaisseur et du diamètre des conduits. Ils fournissent des mesures par petits incréments, ce qui les rend idéaux pour un travail détaillé.

– Utilisation : Mesurez l’épaisseur et le diamètre des conduits avec une grande précision.

– Astuce : utilisez des micromètres pour les mesures critiques où une grande précision est requise.

6.2 Calculatrices et logiciels en ligne

en savoir plus sur les tailles de conduits

En plus des outils de mesure manuelle, plusieurs calculateurs et logiciels en ligne peuvent vous aider à déterminer la taille des conduits. Ces ressources simplifient le processus et fournissent des résultats rapides et précis.

6.2.1 Calculateurs de remplissage de conduits en ligne

Les calculateurs de remplissage de conduits en ligne vous aident à déterminer la taille de conduit appropriée en fonction du nombre et de la taille des conducteurs. Saisissez simplement les détails du conducteur et le calculateur fournit la taille de conduit recommandée.

– Exemple : Le calculateur de remplissage de conduits Southwire permet aux utilisateurs de saisir les tailles et les quantités de conducteurs pour déterminer la taille correcte du conduit.

6.2.2 Outils de référence du code NEC

Plusieurs sites Web et applications offrent un accès facile aux références du code NEC, vous aidant ainsi à garantir le respect des limites de remplissage, des facteurs de déclassement et d'autres réglementations.

– Exemple : l'application Electrical Code Reference fournit un accès rapide aux tableaux et directives NEC.

6.2.3 Logiciel de conception électrique

Les logiciels de conception électrique offrent des outils complets pour la planification et la conception de systèmes électriques, y compris le dimensionnement des conduits. Ces programmes incluent souvent des calculatrices intégrées et des références de code.

– Exemple : Autodesk AutoCAD Electrical fournit des outils pour la conception de systèmes électriques, notamment le routage et le dimensionnement des conduits.

6.2.4 Ressources du fabricant

Fabricant de conduits en PVC Ctube

De nombreux fabricants de conduits proposent des ressources en ligne, notamment des tableaux de dimensionnement, des calculateurs et des guides d'installation. Ces ressources sont adaptées à leurs produits et fournissent des conseils spécifiques pour la sélection et l'installation des conduits.

– Exemple : Le site Web Ctube fournit des tableaux de dimensionnement et une assistance technique pour leur gamme de conduits en PVC.

7. Conclusion

La sélection de la taille de conduit électrique appropriée est un aspect essentiel de la conception et de l’installation de systèmes électriques sûrs, efficaces et conformes. En comprenant les différents types de conduits, leurs tailles typiques et les facteurs qui influent sur le choix de la taille, les professionnels peuvent prendre des décisions éclairées qui garantissent la sécurité et l'efficacité des installations électriques. Des mesures précises et une sélection appropriée des tailles de conduits, associées au respect des codes électriques et des meilleures pratiques, sont essentielles pour réaliser des systèmes électriques performants et fiables.

Conduit en PVC série DB

Ctube est un fabricant de conduits et de raccords en PVC en Chine, spécialisé dans les solutions innovantes pour la gestion et la protection des câbles. Notre gamme de produits comprend des tubes de conduit en PVC homologués UL, des conduits et raccords solaires, des options sans halogène et des produits conformes aux normes AS/NZS 2053. Nous détenons les certifications UL, CSA, CE, ROHS et IEC.

Nous proposons des tailles, couleurs, diamètres intérieurs, diamètres extérieurs et épaisseurs de paroi personnalisés pour répondre aux exigences spécifiques de divers projets, le tout dans le respect des normes en vigueur. Choisissez Ctube pour des produits de haute qualité et un service efficace.

Tout ce que vous devez savoir sur la taille des conduits électriques En savoir plus "

comment choisir le fournisseur de conduits électriques rigides

Comment trouver le bon fabricant de conduits électriques en PVC ?

 

Voici quelques conseils pour identifier un bon fabricant de conduits électriques en PVC :

1.Recherchez un fabricant avec une bonne réputation: Consultez les avis, notes et témoignages en ligne d’autres clients pour avoir une idée de la réputation du fabricant. Un bon fabricant aura des commentaires positifs et une expérience dans la production de produits de haute qualité.

En tant que fabricant professionnel de conduits en PVC, Ctube s'est engagé dans le projet PV2 d'Abou Dhabi, Émirats arabes unis, Al Dhafra. Le projet Abu Dhabi, Émirats arabes unis, Al Dhafra PV2 est le plus grand projet photovoltaïque au monde. Le budget total du projet s'élève à environ 1 milliard de dollars américains. Une fois le projet terminé, il permettra de répondre à la demande en électricité de 160 000 foyers et de réduire 2,4 millions de tonnes de dioxyde de carbone par an, soit l'équivalent des émissions de 200 000 voitures.

page produit 7

2.Vérifier les certifications: Un fabricant réputé disposera de certifications d'organisations reconnues qui confirment que ses produits répondent à des normes et exigences spécifiques. Recherchez des certifications telles que UL, CSA ou ETL.

En tant que fabricant professionnel de conduits en plastique, Ctube possède 50 brevets technologiques nationaux, a obtenu les certifications de système ISO9001 et ISO14001 et est conforme aux normes UL, AS/NZS, CSA, CE, IEC, ROHS et autres normes.

page produit 5

3.Considérez la gamme de produits proposés: Un bon fabricant proposera une large gamme de produits pour répondre à différents besoins et applications. Recherchez un fabricant qui propose différents types de conduits, raccords et accessoires en PVC pour fournir une solution complète pour votre projet.

Chez ctube, nous proposons des produits de haute qualité à des prix compétitifs. Nos conduits en PVC sont conçus pour un usage professionnel et répondent aux normes de l'industrie.

nous avons les principaux produits suivants :

– pour le marché américain : conduit pvc rigide UL651 sch40 et sch80, Type EB, DB120, PVC ENT
– pour le marché canadien : conduit pvc rigide CSA et DB2, PVC ENT,
– pour les marchés australien et néo-zélandais, conduits et raccords en PVC AS/NZS 2053
– pour l’Europe, l’Amérique du Sud, conduits et raccords en PVC certifiés ICE61386
– Conduits et raccords sans halogène à faible fumée
– Conduits et raccords solaires

 

4.Vérifiez les options de personnalisation: Si vous avez des exigences spécifiques pour votre projet, recherchez un fabricant qui propose des options de personnalisation, telles que des longueurs, des couleurs et des marquages personnalisés sur le conduit.

Ctube prend en charge le service de personnalisation, y compris les matériaux (PVC/LSZH), la taille (1/2", 3/4", 1", 1 1/4". 1 1/2", 2", 2 1/2", 3 », 3 1/2 », 4 », 5 », 6 »,8 », couleurs (noir, gris, blanc, orange, bleu et autres couleurs peuvent être personnalisées), ainsi que l'impression des emballages.

fabricant et fournisseur de conduits en PVC

5. Recherchez des mesures de contrôle de la qualité: Un bon fabricant mettra en place des mesures de contrôle de qualité strictes pour garantir que ses produits respectent ou dépassent les normes de l’industrie. Renseignez-vous sur leurs processus et procédures de contrôle qualité pour vous assurer que vous obtenez un produit de haute qualité.

Chez CTube, nous prenons la qualité au sérieux. Nos produits de conduits en PVC sont soumis à des procédures de test et de contrôle qualité rigoureuses pour garantir qu'ils respectent ou dépassent les normes de l'industrie. Nous utilisons des matériaux de haute qualité et avons passé de nombreux rapports de tests pour garantir que nos produits sont sûrs et fiables pour une utilisation dans une variété d'applications. Notre équipe d'assurance qualité (AQ) se consacre à surveiller notre processus de production et à garantir que nos produits répondent à nos exigences. normes de qualité strictes. Nous utilisons une technologie et des équipements de pointe pour tester la résistance, la durabilité et d'autres facteurs importants de nos produits, et nous nous engageons à nous améliorer continuellement pour garantir que nos produits restent à la pointe de l'industrie. Lorsque vous choisissez CTube pour vos besoins en conduits en PVC, vous pouvez être sûr que vous obtenez un produit de haute qualité qui a été minutieusement testé et répond aux normes de qualité et de sécurité les plus élevées. Contactez-nous dès aujourd'hui pour en savoir plus sur nos produits et notre engagement envers la qualité.

fabricant et fournisseur de conduits en PVC 2

6.Tenez compte du prix et de la livraison: Bien que le prix ne doive pas être le seul facteur dans le choix d’un fabricant, il est important de prendre en compte les options de tarification et de livraison. Recherchez un fabricant qui propose des prix compétitifs et une livraison dans les délais pour respecter les délais de votre projet.

Ctube est un fabricant de conduits en PVC bien établi avec une usine de plus de 10 000 mètres carrés et une équipe de plus de 300 employés qualifiés. Notre processus de production utilise une technologie avancée automatisée et semi-automatisée, ce qui nous permet de fabriquer des produits de haute qualité tout en maintenant de faibles coûts. Nous avons la capacité de produire des conduits en PVC à grande échelle, ce qui fait de nous un choix fiable pour les commandes de gros volumes. De plus, nous disposons de notre propre système de logistique et de distribution, garantissant une livraison rapide de nos produits aux clients du monde entier. Grâce à nos installations de pointe, notre équipe expérimentée et notre processus de production rationalisé, nous nous engageons à fournir des produits de conduits en PVC de qualité qui répondre aux besoins de nos clients. Contactez-nous dès aujourd'hui pour en savoir plus sur nos capacités et comment nous pouvons soutenir votre projet.

En suivant ces conseils, vous pouvez identifier un bon fabricant de conduits électriques en PVC et vous assurer d'obtenir des produits de haute qualité pour votre projet.

Comment trouver le bon fabricant de conduits électriques en PVC ? En savoir plus "

Faire défiler vers le haut

Demander un devis

Remplissez le formulaire ci-dessous ou envoyez-nous un e-mail à [email protected]

Entrez les détails du produit (tels que le modèle, la taille, la quantité, etc.) et d'autres exigences spécifiques pour recevoir un devis précis.
Discute avec nous
👋 Bienvenue sur Ctube !

Vous recherchez un fournisseur fiable de conduits électriques ? Nous sommes là pour vous aider !
Discutez avec nous sur WhatsApp pour une assistance rapide, des devis ou toute question sur nos produits.

Pour toute communication ultérieure, veuillez nous envoyer un e-mail à [email protected].